
9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 1

Oracle PLSQL Best Practices
and Tuning

Achieving PL/SQL Excellence

Steven Feuerstein
steven@stevenfeuerstein.com
steven.feuerstein@quest.com

www.quest.com

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 2

Software Used in Training
PL/Vision: a library of packages installed on top of PL/SQL
– PL/Vision Lite - use it, copy, change it for free -- unless you build

software to be sold commercially
– Advanced PL/SQL Knowledge Base: contains PL/Vision Professional,

the fully supported and enhanced version
Demonstration scripts executed in the training can be found on
the RevealNet PL/SQL Pipeline:
– www.revealnet.com/Pipelines/PLSQL/index.htm
– Archives, Miscellaneous, PL/SQL Seminar Files
– See filedesc.doc for a description of many of the files

A PL/SQL IDE (Integrated Development Environment)
– You no longer have to use SQL*Plus and a crude editor! Choose from

among the many listed in plsql_ides.txt

plsql_ides.txt

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 3

Training Objectives

Learn how to build code that:
– Is readable, both by the author and others
– Is more easily and quickly maintained
– Works more efficiently
– You are proud of

Improve your ability to review code: yours and others'
– To do that, you have to know how to recognize what is

wrong with a program

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 4

Training Outline

Setting the stage
Writing SQL in PL/SQL
Package Construction
Modularizing and Encapsulating Logic
Deploy an Exception Handling Architecture
Unit Test within a Framework
Optimize Algorithms
Use Data Structures Efficiently
Manage Code in the Database and SGA
Create Readable and Maintainable Code

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 5

Setting the Stage
PL/SQL Tuning & Best Practices

What's wrong with this code?
Setting expectations re: tuning
Implementation strategies for best practices
Analyzing performance
Understanding the PL/SQL Architecture

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 6

"What is Wrong with this Code?"

Code repetition!
– More to fix, more to maintain

Exposed implementation!
– show me how it is getting the job done

Hard-coding
– assumes that something will never change

-- and that is never going to not happen

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 7

Hard-Coding in PL/SQL
Literal values IF num_requests > 100 THEN
Date format in a call to TO_DATE 'MM/DD/YY'
Language specificities '09-SEP-2001'
Constrained declarations NUMBER(10,4)
Variables declared using base datatypes my_name VARCHAR2(20)
Every SQL statement you write, especially implicit cursors
COMMIT and ROLLBACK statements
Fetching into a list of individual variables
Embedded (unencapsulated) business rules

Scary,
isn't it?

When you are done with this seminar, you will know
how to get rid of all these kinds of hard-coding.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 8

Scope of Tuning Training

Focus is on PL/SQL
-- not SQL
In other words: tune
your SQL first!
Limited treatment of
SQL tuning, SGA
sizing and analysis,
SQL-specific new
features in Oracle,
etc.

SQL Engine

PL/SQL Engine

SQL Statement
Executor

PL/SQL
Statement
Executor

PL/SQL
Block Code

SQL Data

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 9

Expectations for a Training on
Tuning

Improve the
performance of your

application 1000
fold for only $19.95

a month!*

*Plus shipping and handling and technical support. All
performance degradation the responsibility of the user.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 10

Resources for PL/SQL Tuning
Interested in "Oracle tuning"? The world is your oyster:
– Oracle documentation
– Numerous tuning books and Web sites
– Many, many tools

But PL/SQL tuning? Slim pickings...
– PL/SQL books and general Oracle tuning books offer some

coverage, but it is minimal and piecemeal
– Code Complete by Steve McConnell (Microsoft Press)

• Many tuning tips are not language-specific. This book offers an
excellent treatment of tuning philosophies and issues you have to
address in any programming language

PL/SQL tuning is tough, compared to SQL tuning
– You have to analyze and tune algorithms

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 11

Tuning Myths
“A fast program is as important as a correct one”
– Squeezing out microsecond performance improvements is much less

important than meeting user requirements
"Fewer lines of code improves speed"
– There is no predictable relationship between lines of code and

resulting performance. Think recursion...
– But increasing code density definitely reduces readability

“Certain operations are probably faster than others”
– There is no room for “probably” in tuning. Either an operation is faster

or it is not -- and that fact can change as you change versions and
environments

"Optimize as you write your code"
– Don't knowingly write inefficient code, but don't agonize over code that

may never contribute to a performance bottleneck. These are often
only apparent when you run a completed application

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 12

Strategies for Implementing
Best Practices

PL/SQL Tuning & Best Practices

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 13

Words Are Not Enough!

Need to develop a "culture of quality", so that all developers
consciously seek to write higher quality code.
Then move beyond words to software components and utilities that:
– Implement the standards for developers, and simply present them as

infrastructure components
– Generate standards-based code
– Analyze code for compliance with standards

You have a long list of best practices and
standards that you plan to deploy in your
organization.

How can you get developers to "follow the
rules"? Send out a memo? Hold a
meeting?

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 14

Generator and Analyzer Utilities

You have a number of options to generate code:
– Build your own. It's not too hard to do something "quick and dirty" --

and very focused on your needs
– Use the PL/Vision PLVgen package to create standard "code starters"
– Many IDEs have templates and mini code libraries
– Full-blown generation tools like Oracle Designer and PL/Generator

You can also use SQL and the data dictionary to analyze your
code
– It's one of the big advantages of stored code

SELECT DISTINCT name
FROM USER_SOURCE
WHERE INSTR (UPPER (text), ' CHAR') > 0;

showchar.sql
showei.sql

showsrc.sql
valstd.pkg

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 15

Strategies for Implementation
Summary

Involve the entire dev team in creating and adopting
best practices.
– Anything imposed risks backlash

Provide tools that implement standards "automatically"
– Developers won't even realize they're conforming

Analyze stored code for compliance with standards
– Use the power of SQL to manage your code, as well as

your users' data

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 16

PL/SQL Tuning & Best Practices

Utilize Existing Tools
The PL/SQL Code Profiler (Oracle8i)
The DBMS_APPLICATION_INFO package
Homegrown Timer Utility
Compare Implementations
Calculate Overhead of Various Operations

Analyzing Performance

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 17

Measure Before You Tune
Oracle PL/SQL is a different sort of animal from standard
programming languages
– It not only is designed to manipulate Oracle RDBMS information,

but the code is stored in and executed from that database!
– Accessing that code competes with other DB operations.

Tuning PL/SQL code involves three main areas of tuning:
– SQL statements
– PL/SQL code (algorithms)
– Memory utilization and management of code

Critical to tune for concurrent users, not just single user.

And
upgrading!

But before you can tune, you must know what is
running slowly. You must measure.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 18

Utilize Existing Tools
Oracle and other software vendors now provide a number of
performance analysis tools
– Unfortunately, almost all focus almost exclusively on SQL

TKPROF
– Lots of output, lots of work to analyze that output

Later-generation tools embed and offer expertise
– Sure, you should know the basics of SQL tuning, but it is

increasingly possible to rely on SW-based knowledge to do the
hard work for you

– Oracle Performance Pack
– Quest SQLab
– Computer Associates SQL Station Plan Analyzer
– Others, I am sure...

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 19

The PL/SQL Code Profiler

In Oracle8i, the DBMS_PROFILER package offers an API to
facilitate performance and code coverage analysis
Easy to gather statistics:
– Install the package and

supporting elements
– Start the profiler
– Run your code
– Stop the profiler

Bigger challenge:
Analyzing the results...

BEGIN
DBMS_OUTPUT.PUT_LINE (

DBMS_PROFILER.START_PROFILER (
'showemps ' ||
TO_CHAR (SYSDATE, 'YYYYMMDD HH24:MI:SS')
)

);
showemps;
DBMS_OUTPUT.PUT_LINE (

DBMS_PROFILER.STOP_PROFILER);
END;

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 20

Installing the Code Profiler

You will probably have to install the code yourself (in the SYS schema)
Check the package specification file for documentation and guidelines

– Specification: dbmspbp.sql Body: prvtpbp.plb
– Files are located in Rdbms\Admin unless otherwise noted

You must install the profile tables by running the proftab.sql script. Can
define them in a shared schema or in separate schemas
Creates three tables:

– PLSQL_PROFILER_RUNS: parent table of runs
– PLSQL_PROFILER_UNITS: program units executed in run
– PLSQL_PROFILER_DATA: profiling data for each line in a program unit

These tables, particularly *_DATA, can end up with lots of rows in them

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 21

Interpreting Code Profiler Results
To make it easier to analyze the data produced by the profiler,
Oracle offers the following files in the Ora81\plsql\demo
directory:
– profrep.sql: Creates a number of views and a package named prof_report_utilities

to help extract data from profiling tables
– profsum.sql: series of canned queries and programs using prof_report_utilities

Don't run them all; pick the ones that look most useful

EXECUTE prof_report_utilities.rollup_all_runs;

/* Total time */
SELECT TO_CHAR (grand_total / 1000000000, '999999.99') AS grand_total

FROM plsql_profiler_grand_total;

/* Total time spent on each run */
SELECT runid, SUBSTR (run_comment, 1, 30) AS run_comment,

run_total_time / 1000000000 AS seconds
FROM plsql_profiler_runs

WHERE run_total_time > 0
ORDER BY runid asc;

slowest.sql
slowest.txt

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 22

Homegrown Timer Utility

PL/SQL developers often need a very granular timing
mechanism: What is the elapsed time for this one function?
Oracle offers several mechanisms to get this information
– DBMS_UTILITY.GET_TIME function
– V$TIMER table and other V$ data sources
– SQL*Plus SET TIMING ON

In most cases, you will be best off building an encapsulation
around the lower-level functionality

BEGIN
PLVtmr.capture;
showemps;
PLVtmr.show_elapsed

('Showemps');
END;

DECLARE
se_tmr tmr_t :=

tmr_t.make ('Showemps');
BEGIN

se_tmr.go;
showemps;
se_tmr.stop;

END;

plvtmr.pkg
tmr81.ot

vsesstat.pkg

Package Implementation Object Implementation

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 23

Compare Implementations

You write a program
and it just doesn't seem
fast enough
Time to try a different
approach -- and then
you need to compare
them
– The timer utility offers an

easy way to do this

DECLARE
v_user VARCHAR2(30);
once_tmr tmr_t :=

tmr_t.make ('Packaged',
&1);

every_tmr tmr_t :=
tmr_t.make ('USER', &1);

BEGIN
once_tmr.go;
FOR indx IN 1 .. &1
LOOP

v_user := thisuser.name;
END LOOP;
once_tmr.stop;

every_tmr.go;
FOR indx IN 1 .. &1
LOOP

v_user := USER;
END LOOP;
every_tmr.stop;

END;

thisuser.*

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 24

Calculate Overhead

We often wonder how
expensive is a particular
operation, or when Oracle
actually performs a
requested task
Common questions:
– Does Oracle identify the

result of a query with the
OPEN or the first FETCH?

– What is the overhead of a
procedure or function call?

DECLARE
otmr tmr_t :=

tmr_t.make ('OPEN?');
ftmr tmr_t :=

tmr_t.make ('FETCH?');

CURSOR lots_stuff IS
SELECT *
from plsql_profiler_data
Order BY total_time DESC;

lots_rec lots_stuff%ROWTYPE;
BEGIN

otmr.go;
OPEN lots_stuff;
otmr.stop;

ftmr.go;
FETCH lots_stuff INTO lots_rec;
ftmr.stop;

END;

open_fetch.sql
curperf*.sql
ovrhead.sql

SQL> @open_fetch
Elapsed for "OPEN" = 0 seconds.
Elapsed for "FETCH?" = 1490.1
seconds.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 25

Understanding PL/SQL
Architecture

PL/SQL Tuning & Best Practices

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 26

System Global Area (SGA) of RDBMS Instance

PL/SQL in Shared Memory

Shared Pool

Large Pool

Reserved Pool

show_empscalc_totals upd_salaries

Select *
from emp

Shared SQL

Pre-parsed
Update emp
Set sal=...

Library cache

Session 1 memory
(PGA/UGA)

emp_rec emp%rowtype;
tot_tab tottabtype;

Session 2 memory
(PGA/UGA)

emp_rec emp%rowtype;
tot_tab tottabtype;

User 1

User 2

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 27

Code in Shared Memory
PL/SQL is an interpretative language. The source code is
“partially compiled” into an intermediate form (“p-code”).
– The p-code is loaded into the shared pool when any element of

that code (package or stand-alone program) is referenced.
The partially-compiled code is shared among all users who
have EXECUTE authority on the program/package.
– Prior to Oracle7.3, contiguous memory was required for program

units. That is now relaxed, but still preferable.
Each user (Oracle session) has its own copy of any data
structures defined within the program/package.
– Separate sets of in-memory data (not shared among different

users) are stored in the PGA.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 28

Writing SQL in PL/SQL

PL/SQL Tuning and Best
Practices

What's the Big Deal?
Some Rules to Follow
Synchronize Code with Data Structures
Avoid Repetition of SQL
Optimize the way we write SQL in PL/SQL

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 29

Why We Write PL/SQL Code

The predominant reason you write PL/SQL programs is to
interact with the database, which:
– Is the repository of information that shapes your business
– Is always changing

The layer of PL/SQL code should support the data model
– It should not disrupt your ability to maintain and work with that model
– But common coding practices tend to do just that: make it extremely

difficult to modify and enhance your code as the data structures
change

The difficulties surface in two different areas:
– Transaction integrity
– Poor coding practices

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 30

Transaction Integrity
the Hard Way

Typical Data Access Method

Application software
access data structures

directly.

Each program must
maintain transaction

integrity.

When a transaction consists of three updates, two inserts,
a delete and six queries, how do you guarantee that each
developer is going to get it right?

Order
Table

Item
Table

Order Entry
Program

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 31

The Dangers of Poor
Coding Practices

If you are not very careful, it is very easy to write your code
in ways that cause your code to break whenever a change
occurs in the underlying structures

Dept

Emp

Data Structures

PROCEDURE calc_totals
IS

v_dname VARCHAR2(20);
v_ename CHAR(30);

BEGIN
SELECT dname, ename

INTO v_dname, v_ename
FROM emp, dept

WHERE ...;
...

END;

Code

This program is a
ticking time bomb

in my
application...

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 32

The View from 30,000 Feet

Never repeat an SQL statement in application code

Encapsulate all SQL statements behind a procedural interface,
usually a package

Write your code assuming that the underlying data structures
will change

Take advantage of PL/SQL-specific enhancements for SQL

High-Level Best Practices

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 33

Never Repeat SQL
Take the "acid test" of SQL in PL/SQL: Can you say "sure"
to the following question?

– If the answer is "not really", then you have essentially lost control
of your application code base

It is crucial that you avoid repetition of the same logical
SQL statement...
– With repetition, comes variation, and with it excessive parsing
– Potentially significant impact on performance and maintainability

Do you know all the places in your code where an INSERT (or
DELETE or UPDATE) occurs for your table(s)?

And sometimes you have to worry about
more than logical variations!

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 34

Give W/One Hand,Take W/the Other

Oracle sometimes improves things in ways that make it very
difficult for us to take advantage of them
When are two SQL statements the same and yet different?

BEGIN
UPDATE ceo_compensation

SET stock_options = 1000000,
salary = salary * 2.0

WHERE layoffs > 10000;
END;

BEGIN
update ceo_compensation

set stock_options = 1000000,
salary = salary * 2

where layoffs > 10000;
END;

SELECT COUNT(*)
FROM after_deforestation;

select count(*)
from after_deforestation;

BEGIN
UPDATE favorites

SET flavor = 'CHOCOLATE'
WHERE name = 'STEVEN';

END;

BEGIN
update favorites

set flavor = 'CHOCOLATE'
where name = 'STEVEN';

END;

Column A Column B

=

=

=

?

?

?

twoblocks.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 35

Crossing the Physical-Logical Divide

When you write SQL, you must be aware of the physical
representation of your code
– Pre-parsed cursors are only used for byte-wise equal statements

(analyzed using a hash of the SQL string)
– White space (blanks, tabs, line breaks) make a difference – except for

SQL inside PL/SQL blocks
– PL/SQL reformats SQL to avoid nuisance redundancy

Not much can be done, however, about these kinds of logical
duplications:

BEGIN
UPDATE ceo_compensation

SET stock_options = 1000000,
salary = salary * 2

WHERE layoffs > 10000;

BEGIN
update ceo_compensation

set salary = salary * 2,
stock_options = 1000000

where layoffs > 10000;

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 36

How to Avoid SQL Repetition

You should, as a rule, not even write
SQL in your PL/SQL programs
– You can't repeat it if you don't write it

Instead, rely on pre-built, pre-tested,
write-once, use-often PL/SQL
programs.
– "Hide" both individual SQL statements

and entire transactions.

SQL

Guaranteed transaction integrity!

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 37

Transaction Integrity with
PL/SQL

A Method That Guarantees Integrity

Order
Table

Item
Table

Order Entry
Program

The application calls
a packaged program
to execute the logical

transaction.

All business rules
are embedded and
maintained in the

package The packaged code
communicates with

the tables.

This is why Oracle originally developed the PL/SQL language!

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 38

A team lead can't watch over everybody's shoulders to
"police" the construction of every SQL statement
– Instead, a group needs to set policies and provide code so that

everyone can follow the rules – and write better code

Here are some recommendations:
– Build and use table encapsulation packages
– Hide all single row queries behind function interfaces
– In particular, don't expose the dual table
– Move multi-row cursors into packages

Hide all SQL Behind Interface

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 39

Move all SQL inside packages: one per table or "business object"
– All DML statements written by an expert, behind a procedural interface,

with standardized exception handling
– Commonly-needed cursors and functions to return variety of data (by

primary key, foreign key, etc.)
– If the encapsulation package doesn't have what you need, add the new

element, so that everyone can take advantage of it
– Separate packages for query-only and change-related functionality (for

added security)

The Beauty of Table Encapsulation

te_employee.*
givebonus*.sp

Insert
Update
Delete

GetRow

Employee Application
Code

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 40

Allow No Exceptions!
Instead of this:

Do this:

Check dependency information to identify
programs that rely directly on tables

INSERT INTO employee
(employee_id, department_id, salary, hire_date)

VALUES
(1005, 10, 10000, SYSDATE);

te_employee.insert (
employee_id_in => 1005, department_id_in => 10,
salary_in => 10000, hire_date_in => SYSDATE);

SELECT owner || '.' || name refs_table,
REFERENCED_owner || '.' || REFERENCED_name table_referenced

FROM ALL_DEPENDENCIES
WHERE type IN ('PACKAGE', 'PACKAGE BODY', 'PROCEDURE', 'FUNCTION')
AND REFERENCED_type IN ('TABLE', 'VIEW');

reftabs.sql

TRUE STORY!
"I forced all programmers to

use the encapsulated
INSERT, instead of writing

their own. Using SQLab, we
determined that this one

insert statement was parsed
1 time and executed over a
million times! It has been in
the SGA for over 2 weeks,

never aging out because it is
called so frequently."

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 41

Minimal Encapsulation a Must!
At an absolute minimum, hide every single row query behind the
header of a function
– If you hide the query, you can choose (and change) the implementation

for optimal performance

No need to argue about implicit vs explicit; the main thing is to
encapsulate

Best approach: put the function in a package, so you can take
advantage of package-level data
– Very useful for data caching mechanisms; by hiding the way you retrieve

the data, you allow yourself the freedom to change the retrieval
implementation without affecting any usages

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 42

DECLARE
l_name te_employee.fullname_t;

BEGIN
l_name :=

te_employee.name (
employee_id_in);

...
END;

Get Me the Name for an ID...
Don't "expose" any SQL...

CREATE OR REPLACE PACKAGE te_employee
AS

SUBTYPE fullname_t IS VARCHAR2
(200);

FUNCTION fullname (
l employee.last_name%TYPE,
f employee.first_name%TYPE

)
RETURN fullname_t;

FUNCTION name (
employee_id_in IN

employee.employee_id%TYPE
)

RETURN fullname_t;
END;
/

Instead, hide the query
DECLARE

l_name VARCHAR2(100);
BEGIN

SELECT last_name || ',' ||
first_name

INTO l_name
FROM employee

WHERE employee_id =
employee_id_in;

...
END;

And call the function...

explimpl.pkg

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 43

And Never, Ever Expose the
Dual Table

The dual table is 100% kluge. It is astonishing that Oracle
still relies on it within the STANDARD PL/SQL package

Always hide queries against the dual table inside a function
– We need to be optimistic: perhaps in Oracle12i the dual table will

no longer be necessary

BEGIN
SELECT employee_id_seq.NEXTVAL

INTO l_employee_id
FROM dual;

BEGIN
l_employee_id :=

te_employee.next_pkey;

Instead of this... Write this:

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 44

Encapsulation Creation Options

You can pursue one of the following four models:

Many challenges to successful encapsulation, including:
– Write large volumes of high quality code.
– Train developers to understand and use the API.

Quick and Dirty
Homemade Model

pkggen.sql

Feature of
Broader Product

Oracle Designer
SQL-Station

Focused
Generator
Product

PL/Generator
from RevealNet

Template-Based
Development

tmplgen.sql

Increasing degrees of flexibility and automation

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 45

Write Code Assuming Change

Use anchoring to tightly link code to underlying data
structures
Rely on bind variables inside SQL statements
Fetch into cursor records
Qualify all references to PL/SQL variables inside SQL
statements

Data structure
changes

Existing
code base

valid

Dependent
programs
marked
invalid

Re-compile
invalid code

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 46

Anchor Declarations of
Variables

You have two choices
when you declare a
variable:
– Hard-coding the datatype
– Anchoring the datatype to

another structure

ename VARCHAR2(30);
totsales NUMBER (10,2);

Hard-Coded Declarations

v_ename emp.ename%TYPE;
totsales pkg.sales_amt%TYPE;

emp_rec emp%ROWTYPE;
tot_rec tot_cur%ROWTYPE;

Anchored Declarations
Whenever possible, use anchored
declarations rather than explicit
datatype references

%TYPE for scalar structures
%ROWTYPE for composite
structures

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 47

ename
empno

hiredate

VARCHAR2(60)
NUMBER

DATE

The emp table

sal NUMBER

Examples of Anchoring

PACKAGE config
IS

dollar_amt NUMBER (10, 2);

pkey_var NUMBER(6);

SUBTYPE primary_key
IS

pkey_var%TYPE;

END config;

DECLARE
v_ename emp.ename%TYPE;
v_totsal config.dollar_amt%TYPE;
newid config.primary_key;

BEGIN
. . .

END;

PLV.sps
aq.pkg

Use %TYPE and %ROWTYPE
when anchoring to database
elements
Use SUBTYPEs for
programmatically-defined types
SUBTYPEs can also be used to
mask dependencies that are
revealed by
%TYPE/%ROWTYPE

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 48

Benefits of Anchoring
Synchronize PL/SQL variables with database columns and rows
– If a variable or parameter does represent database information in your

program, always use %TYPE or %ROWTYPE
– Keeps your programs in synch with database structures without having

to make code changes
Normalize/consolidate declarations of derived variables
throughout your programs
– Make sure that all declarations of dollar amounts or entity names are

consistent
– Change one declaration and upgrade all others with recompilation

Remember: Never Repeat Code!

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 49

1 name VARCHAR2 (30);
2 minbal NUMBER(10,2);
3 BEGIN
4 OPEN company_pkg.allrows (1507);

5 FETCH company_pkg.allrows INTO name, minbal;

6 IF name = ‘ACME’ THEN ...

Quiz: Where's the Hard Coding?

Better question for this code: which of these six lines
of code do not contain an example of hard-coding?

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 50

name VARCHAR2 (30);
minbal NUMBER(10,2);

BEGIN
OPEN company_pkg.allrows;
FETCH company_pkg.allrows

INTO name, minbal;

IF name = ‘ACME’ THEN ...

CLOSE company_pkg.allrows;

Always Fetch into Cursor Records

rec company_pkg.allrows%ROWTYPE;
BEGIN
OPEN company_pkg.allrows;
FETCH company_pkg.allrows INTO rec;

IF rec.name = ‘ACME’ THEN ...

CLOSE company_pkg.allrows;

Fetching into individual
variables hard-codes

number of items in select
list.

w
r
o
n
g

r
I
g
h
t

Fetching into a record
means writing

less code.

If the cursor select list
changes, it doesn't

necessarily affect your
code.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 51

Avoid Hard Coding inside SQL
Don't bury hard-coded values in your SQL statements
– Instead, move your cursors to a shared area and then rely on that

version in all instances
Here is some inefficient, hard to maintain code:

And what it should be:

DECLARE
CURSOR r_and_d_cur IS

SELECT last_name FROM employee
WHERE department_id = 10;

DECLARE
CURSOR marketing_cur IS

SELECT last_name FROM employee
WHERE department_id = 20;

BEGIN
OPEN marketing_cur;

CREATE OR REPLACE PACKAGE bydept
IS

CURSOR name_cur (dept IN INTEGER) IS
SELECT last_name FROM employee
WHERE department_id = dept;

BEGIN
OPEN bydept.name_cur (20);

bindvar.sql
Local variables

also avoid multiple parses.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 52

Avoiding SQL-PL/SQL
Naming Conflicts

One rule: make sure that you never define variables with same name as
database elements
– OK, you can be sure today, but what about tomorrow?
– Naming conventions simply cannot offer any guarantee

Better approach: always qualify references to PL/SQL variables inside
SQL statements
– Remember: you can use labels to give names to anonymous blocks

PROCEDURE del_scenario
IS

reg_cd VARCHAR2(100) := :GLOBAL.reg_cd;
BEGIN

DELETE FROM scenarios
WHERE reg_cd = del_scenario.reg_cd

AND scenario_id = :scenario.scenario_id;
END;

No problem!

delscen.sql
delscen1.sql
delscen2.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 53

Write SQL Efficiently in PL/SQL

It's one thing to tune your SQL statements; it is quite
another to write your SQL inside PL/SQL so that it
executes as efficiently as possible

Use native SQL whenever possible
Use PL/SQL to replace IO-intensive SQL
Use the RETURNING Clause
Use WHERE CURRENT OF
BULK BIND and COLLECT (Oracle8i)

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 54

Use Native SQL Whenever
Appropriate

If you can replace a PL/SQL loop that executes a SQL
statement repetitively with a "pure" SQL statement, you are
likely to get improved performance
Instead of this:

Do this:

FOR rec IN (SELECT ename, sal FROM emp)
LOOP

UPDATE emp SET sal = rec.sal * 1.01
WHERE ename = rec.ename;

END LOOP;

UPDATE emp SET sal = sal * 1.01; allsql.tst
allsql2.tst

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 55

Use PL/SQL to Avoid
IO-Intensive SQL

100% Pure SQL -- it's almost always the right way to
go, but sometimes it results in excessive processing
– Correlated sub-queries compute same values repeatedly
– Multiple joins require lots of SORT/MERGE operations

useplsql.tst

SELECT 'Top employee in ' || department_id || ' is ' ||
E.last_name || ', ' || E.first_name str

FROM employee E
WHERE E.salary = (SELECT MAX (salary) FROM employee E2

WHERE E2.department_id = E.department_id)

CURSOR dept_cur IS
SELECT department_id, MAX (salary) max_salary
FROM employee E GROUP BY department_id;

CURSOR emp_cur (dept IN PLS_INTEGER,maxsal IN NUMBER) IS
SELECT last_name || ', ' || first_name emp_name
FROM employee
WHERE department_id = dept AND salary = maxsal;

Instead of one
big query...

Break it up and
run within

PL/SQL loops...

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 56

Use the RETURNING Clause
Oracle8 offers a new clause FOR INSERT and UPDATE
statements: the RETURNING clause.
– Retrieve information from DML statement w/o a separate query.

Instead of this:

Do this:

BEGIN
INSERT INTO UnionBuster VALUES (ub_seq.NEXTVAL, 'Prison', 5);
SELECT ub_id, hourly_wage INTO v_latest_bustID, v_hard_to_beat
FROM UnionBuster
WHERE labor_type = 'Prison';

END;

BEGIN
INSERT INTO UnionBuster VALUES (ub_seq.NEXTVAL, 'Prison', 5)

RETURNING ub_id, hourly_wage
INTO v_latest_bustID, v_hard_to_beat;

END;

returning.tst

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 57

Use WHERE CURRENT OF

When using SELECT FOR UPDATE, use the WHERE
CURRENT OF clause in UPDATE and DELETE to avoid
coding a possibly complex and slower WHERE clause.
Instead of this:

wco.sql

LOOP
FETCH cur INTO rec;
EXIT WHEN cur%NOTFOUND;

UPDATE employee SET last_name = UPPER (last_name)
WHERE employee_id = rec.employee_id;

END LOOP;

LOOP
FETCH cur INTO rec;
EXIT WHEN cur%NOTFOUND;

UPDATE employee SET last_name = UPPER (last_name)
WHERE CURRENT OF cur;

END LOOP;

Do This:

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 58

Use Bulk Binding and COLLECT
Oracle8i offers new syntax to improve the performance of
both DML and queries. In Oracle8, updating from a collection
(or, in general, performing multi-row DML) meant writing
code like this:
CREATE TYPE dlist_t AS TABLE OF INTEGER;
/

PROCEDURE whack_emps_by_dept (deptlist dlist_t)
IS
BEGIN

FOR aDept IN deptlist.FIRST..deptlist.LAST
LOOP

DELETE emp WHERE deptno = deptlist(aDept);
END LOOP;

END;

“Conventional bind” (and lots of them!)

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 59

Oracle server

PL/SQL Runtime Engine SQL Engine

PL/SQL block Procedural
statement
executor SQL

statement
executor

FOR aDept IN deptlist.FIRST..
deptlist.LAST

LOOP
DELETE emp
WHERE deptno = deptlist(aDept);

END LOOP;

Performance penalty Performance penalty
for many for many ““context context
switchesswitches””

Conventional Bind

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 60

Enter the “Bulk Bind”
Oracle server

PL/SQL Runtime Engine SQL Engine

PL/SQL block Procedural
statement
executor SQL

statement
executor

FORALL aDept IN deptlist.FIRST..
deptlist.LAST
DELETE emp
WHERE deptno = deptlist(aDept);

Much less overhead for Much less overhead for
context switchingcontext switching

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 61

Use the FORALL Bulk Bind
Statement

Instead of the individual DML operations, you can do this:

Some restrictions:
– Only the single DML statement is allowed. If you want to INSERT

and then UPDATE, two different FORALL statements
– Cannot put an exception handler on the DML statement

PROCEDURE whack_emps_by_dept (deptlist dlist_t)
IS
BEGIN

FORALL aDept IN deptlist.FIRST..deptlist.LAST
DELETE FROM emp WHERE deptno = deptlist(aDept);

END;

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 62

Use BULK COLLECT for Queries
CREATE OR REPLACE FUNCTION get_a_mess_o_emps

(deptno_in IN dept.depno%TYPE)
RETURN emplist_t
IS

emplist emplist_t := emplist_t();
TYPE numTab IS TABLE OF NUMBER;
TYPE charTab IS TABLE OF VARCHAR2(12);
TYPE dateTab IS TABLE OF DATE;
enos numTab;
names charTab;
hdates dateTab;

BEGIN
SELECT empno, ename, hiredate

BULK COLLECT INTO enos, names, hdates
FROM emp
WHERE deptno = deptno_in;

emplist.EXTEND(enos.COUNT);
FOR i IN enos.FIRST..enos.LAST
LOOP

emplist(i) := emp_t(enos(i),
names(i), hiredates(i));

END LOOP;
RETURN emplist;

END;

BULK COLLECT
performs bulk bind
of results from SQL
select statement
– Returns each

selected expression
in a table of scalars

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 63

Combining FORALL & BULK
COLLECT

FUNCTION whack_emps_by_dept (deptlist dlist_t)
RETURN enolist_t

IS
enolist enolist_t;

BEGIN
FORALL aDept IN deptlist.FIRST..deptlist.LAST

DELETE FROM emp WHERE deptno IN deptlist(aDept)
RETURNING empno BULK COLLECT INTO enolist;

RETURN enolist;
END;

bulkcoll.sql
bulktiming.sql.

bulkcollect91.sql

Use the RETURNING clause to obtain information about
each of the DML statements executed in the FORALL
– Since you are executing multiple DML statements, you need

to BULK COLLECT the RETURNING results into one or more
collections

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 64

Tips and Fine Points
Use bulk binds if you write code with these characteristics:
– Recurring SQL statement in PL/SQL loop
– Use of a collection as the bind variable, or code that could be

transformed to use a collection containing the bind variable
information

Bulk bind rules:
– Can be used with any kind of collection
– Collection subscripts cannot be expressions
– The collections must be densely filled
– If error occurs, prior successful DML statements are NOT ROLLED

BACK
Bulk collects:
– Can be used with implicit and explicit cursors
– Collection is filled starting at row 1

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 65

Optimizing DBMS_SQL Usage

DBMS_SQL implements dynamic SQL in PL/SQL
– It is a very complex and difficult to use package

Keep in mind the following tips when working with
DBMS_SQL:
– Re-parse only when absolutely necessary
– Allocate new cursors only when necessary
– Close dynamic SQL cursors when done, and also in

exception sections
– Always choose binding over concatenation
– Use bulk processing features of Oracle8

effdsql.tst

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 66

Manage Dynamic SQL Cursors

If you have already allocated memory for a cursor and
assigned the value to a PL/SQL variable, you can parse
multiple statements against that same cursor
– Don’t open and close cursors unnecessarily

Make sure you close DBMS_SQL cursors when done and also
in exception sections
– They are not closed automatically when the block terminates
– You will often want to close cursors on exceptions in the parse phase

Best solution: encapsulate calls to
DBMS_SQL.OPEN_CURSOR and also DBMS_SQL.PARSE

openprse.pkg

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 67

Choose Binding over
Concatenation

You can concatenate rather than bind, but binding is almost
always preferable. Two key reasons:
– Simpler code to build and maintain
– Improved application performance

Simpler code to build and maintain
– Concatenation results in much more complicated and error-prone code

unless you are doing a very simple operation
Improved application performance
– Concatenates requires an additional call to DBMS_SQL.PARSE and

also increases the likelihood that the SQL statement will be physically
different, requiring an actual re-parsing and unnecessary SGA
utilization

Note: you cannot bind schema elements, like table names

effdsql.tst
updnval2.sp
updnval3.sp

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 68

Use Bulk Processing Features
Similar to the FORALL and COLLECT features of Oracle8i,
DBMS_SQL as of Oracle8 allows you to specify the use of
"arrays", i.e., index tables, when you perform updates, inserts,
deletes and fetches
Instead of providing a scalar value for an operation, you specify
an index table. DBMS_SQL then repeats your action for every
row in the table
It really isn't "array processing"
– In actuality, DBMS_SQL is executing the specified SQL statement N

times, where N is the number of rows in the table
This technique still, however, can offer a significant
performance boost over Oracle7 dynamic SQL
– And in some cases give you better performance than static SQL

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 69

Array-Oriented Actions

You will take these steps when working with arrays or
collections in DBMS_SQL:
– Bind arrays of values with DBMS_SQL.BIND_ARRAY
– Define a column as an array with DBMS_SQL.DEFINE_COLUMN
– Fetch multiple rows with one call with DBMS_SQL.FETCH_ROWS
– Retrieve multiple column values with DBMS_SQL.COLUMN_VALUE

and DBMS_SQL.VARIABLE_VALUE
We will look at performing updates, inserts and deletes, then
finish up with queries
These examples are explained and explored thoroughly in
chapter 3 of Oracle Built-in Packages (O’Reilly & Associates)

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 70

An Example with Bulk Deletes

When you delete using arrays, you will specify the values in the
WHERE clause for all rows to be deleted

CREATE OR REPLACE PROCEDURE delemps
(enametab IN DBMS_SQL.VARCHAR2_TABLE)

IS
cur PLS_INTEGER := PLVdyn.open_and_parse (
'DELETE FROM emp WHERE ename LIKE UPPER (:ename)');

fdbk PLS_INTEGER;
BEGIN

DBMS_SQL.BIND_ARRAY (cur, 'ename', enametab);

fdbk := DBMS_SQL.EXECUTE (cur);

p.l ('Rows deleted', fdbk);

DBMS_SQL.CLOSE_CURSOR (cur);
END;

dyndel.sp
dyndel.tst

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 71

Returning Values After Execution

With Oracle8, you can include a RETURNING clause
– Obtain info about rows just modified without issuing extra query

CREATE OR REPLACE PROCEDURE delemps (
enametab IN DBMS_SQL.VARCHAR2_TABLE)

IS
cur PLS_INTEGER := PLVdyn.open_and_parse (
'DELETE FROM emp WHERE ename LIKE UPPER (:ename) ' ||
' RETURNING empno INTO :empnos');

empnotab DBMS_SQL.NUMBER_TABLE;
fdbk PLS_INTEGER;

BEGIN
DBMS_SQL.BIND_ARRAY (cur, 'ename', enametab);
DBMS_SQL.BIND_ARRAY (cur, 'empnos', empnotab);
fdbk := DBMS_SQL.EXECUTE (cur);
DBMS_SQL.VARIABLE_VALUE (cur, 'empnos', empnotab);

FOR indx IN empnotab.FIRST .. empnotab.LAST LOOP
p.l (empnotab(indx));

END LOOP;
DBMS_SQL.CLOSE_CURSOR (cur);

END;

dyndel2.sp
dyndel2.tst

Notice use of
VARIABLE_VALUE

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 72

Example of Bulk Fetch -- One Pass

I know the table is small, so I grab all the rows at once
CREATE OR REPLACE PROCEDURE showall IS

cur PLS_INTEGER;
fdbk PLS_ INTEGER;
empno_tab DBMS_SQL.NUMBER_TABLE;
hiredate_tab DBMS_SQL.DATE_TABLE;

BEGIN
cur := PLVdyn.oap ('SELECT empno, hiredate FROM emp');

DBMS_SQL.DEFINE_ARRAY (cur, 1, empno_tab, 100, 1);
DBMS_SQL.DEFINE_ARRAY (cur, 2, hiredate_tab, 100, 1);

fdbk := DBMS_SQL.EXECUTE_AND_FETCH (cur);

DBMS_SQL.COLUMN_VALUE (cur, 1, empno_tab);
DBMS_SQL.COLUMN_VALUE (cur, 2, hiredate_tab);

FOR rowind IN empno_tab.FIRST .. empno_tab.LAST
LOOP

p.l (empno_tab(rowind)); p.l (hiredate_tab(rowind));
END LOOP;
DBMS_SQL.CLOSE_CURSOR (cur);

END;

arrayemp.sp

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 73

Fetching N Records at a Time

What if you do not know how many rows will be fetched?
– In this case, you fetch N rows at a time inside a loop and then exit

when there are no more to fetch. The above example shows the
kind of loop you would write

Note: rows are appended to the index tables. You must
DELETE in between fetches to clear them out (unless you
want to fill the table and process the data later)

DBMS_SQL.DEFINE_ARRAY (cur, 1, empno_tab, numrows, 1);
DBMS_SQL.DEFINE_ARRAY (cur, 2, hiredate_tab, numrows, 1);

fdbk := DBMS_SQL.EXECUTE (cur);
LOOP

fdbk := DBMS_SQL.FETCH_ROWS (cur);

DBMS_SQL.COLUMN_VALUE (cur, 1, empno_tab);
DBMS_SQL.COLUMN_VALUE (cur, 2, hiredate_tab);

EXIT WHEN fdbk < numrows;
END LOOP;

arrayempN.sp

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 74

Update Rows En Masse From File

This examples shows how to do a bulk load of data from a file
into SQL
– Data file contains key (employee number) and new salary
– Use UTL_FILE to read the contents of the file and load it into arrays
– Use Oracle8 DBMS_SQL to update in a single pass

CREATE OR REPLACE PROCEDURE upd_from_file
(loc IN VARCHAR2, file IN VARCHAR2)

IS
cur PLS_INTEGER := DBMS_SQL.OPEN_CURSOR;
fdbk PLS_INTEGER;
empnos DBMS_SQL.NUMBER_TABLE;
sals DBMS_SQL.NUMBER_TABLE;

fid UTL_FILE.FILE_TYPE;
v_line VARCHAR2(2000);
v_space PLS_INTEGER;

Declare DBM_SQL
arrays and UTL_FILE

pointer.

fileupd.sp
fileupd.dat

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 75

Quiz!

Some people get rich by laying off other people
– Write code to show the CEO(s) who laid off the most people, and

the CEO(s) who laid off the second-highest number of people
– You could do it all in pure SQL...but would you want to?

SELECT name || ' of ' || company Slasher1
FROM ceo_compensation
WHERE layoffs =

(SELECT MAX (layoffs)
FROM ceo_compensation);

SELECT name || ' of ' || company Slasher2
FROM ceo_compensation
WHERE layoffs =

(SELECT MAX (layoffs)
FROM ceo_compensation
WHERE layoffs !=

(SELECT MAX (layoffs)
FROM ceo_compensation));0

slowsql_q1.sql
slowsql_a1.sql
slowsql_a1.tst

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 76

Quiz!
This program is running slowly. How can I improve it?
– This is a test of analyzing algorithms for unnecessary and/or slow

program performance, and tuning of DBMS_SQL code
CREATE OR REPLACE PROCEDURE insert_many_emps
IS

cur INTEGER := DBMS_SQL.open_cursor;
rows_inserted INTEGER;

BEGIN
DBMS_SQL.parse (cur,

'INSERT INTO emp (empno, deptno, ename)
VALUES (:empno, :deptno, :ename)',

DBMS_SQL.native);

FOR rowind IN 1 .. 1000
LOOP

DBMS_SQL.bind_variable (cur, 'empno', rowind);
DBMS_SQL.bind_variable (cur, 'deptno', rowind * deptno);
DBMS_SQL.bind_variable (cur, 'ename', 'Steven' || rowind);
rows_inserted := DBMS_SQL.execute (cur);

END LOOP;

DBMS_SQL.close_cursor (cur);
END;

loadlots*.*

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 77

Writing SQL in PL/SQL
Summary

Never Repeat SQL
– Maximize performance, minimize impact of change

Anchor Variables Whenever Possible
– You're almost never doing something for the first time
– If you are, let that be the prototype for all others

Take a Serious Look at Table Encapsulation
– It's a worthwhile investment for the future of your

applications

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 78

PL/SQL Tuning & Best Practices

Package Construction

Hide package-level data inside the package body

Build toggles and windows to increase usability and
flexibility of your packages

Tips for managing large packages

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 79

Hide Package Data!

Never put your variables and other data structures in the
package specification
– Always put it in the body. Then build publicly-available "get and set"

programs to change values in the data structures and retrieve the
current values

External
ProgramData

Set Procedure

Get Function

The benefits include:
– Tighter control over data structures. If your data is public, it can be

changed by any program with EXECUTE authority
– Flexibility to change implementation of data structure
– Ability to track access to the data

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 80

Public vs. Private Data

PACKAGE BODY P_and_L
IS

last_stmt_dt DATE;

FUNCTION last_date RETURN DATE IS
BEGIN

RETURN last_stmt_dt;
END;

PROCEDURE set_last_date (date_in IN DATE)
IS
BEGIN

last_stmt_dt := LEAST (date_in, SYSDATE);
END;

END P_and_L;

PACKAGE P_and_L
IS

last_stmt_dt DATE;
END P_and_L;

Tip: Use PLVgen.gas to
generate code like this.

Now in the body,
with get-and-set

routines.

Public data, declared in
package specification,

directly accessible.

And a business
rule: date cannot
be in the future.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 81

Different Access Paths to Data

IF P_and_L.last_stmt_dt <
ADD_MONTHS (SYSDATE, -3)

THEN
P_and_L.last_stmt_dt := SYSDATE + 12;

END IF;

The public approach exposes fully the variable and allows for violation of
the business rule. Below I move the last statement date into the future.

IF P_and_L.last_date <
ADD_MONTHS (SYSDATE, -3)

THEN
P_and_L.set_last_date (SYSDATE + 12);

END IF;

The private version of the same code hides the variable completely and
protects against violations of the rules.

And a business rule is violated!

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 82

Tracking Variable Reads and Writes

When you use get-and-sets to control access to your data, good
things just naturally start coming your way
– For example, you can easily add a trace to your code to show when, where

and how a specific variable’s value is read and/or changed. Wow!
– If you have exposed the variable in the specification of the package, it would

be very difficult to perform this kind of trace
– A PL/SQL debugger might someday do this
– Or maybe you could examine the source code stored in the USER_SOURCE

view. A fairly tedious process
But with get-and-sets, you have given yourself a “hook” on
which to hang your trace
– Since the variable can only be accessed through these modules, you can

place your trace inside the procedure and function
– The package structure then guarantees that you will have caught every

access

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 83

Tracking Changes to P&L Date

With just a few, quick
changes, the p_and_l
package now uses
PLVxmn to show any
attempts to access the
variable
In this case, the PLVxmn
package itself offers the
ability to display the
module which called the
package
We will learn how to build
a trace package in the
next section

PACKAGE BODY P_and_L
IS

last_stmt_dt DATE;

FUNCTION last_date RETURN DATE IS
BEGIN

PLVxmn.trace
('last_date', 1, last_stmt_dt);

RETURN last_stmt_dt;
END;

PROCEDURE set_last_date (date_in IN DATE)
IS
BEGIN

PLVxmn.trace
('set_last_date', 2, date_in);

last_stmt_dt :=
LEAST (date_in, SYSDATE);

END;
END P_and_L;

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 84

Build Toggles and Windows

You will greatly increase the usability and flexibility of your
packages if you build toggles and windows into the package
interface (specification)

Switch Off

Window

Switch On

Data
External
ProgramSwitch

Flag

Toggles are...
– On/off switches that allow you to modify the behavior of the package
without changing its code

Windows offer...
– Read-only access to the inner workings of a package

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 85

A Window Offers Safe Viewing

Normally, the contents of the package body (private data,
implementation of code) are completely hidden from a user of the
package

– This "black box" protects the integrity of the data and encourages top-
down design and problem-solving, but it can leave you in the dark when
you run and test your code

Maintain package integrity and shed light on internal package
functioning by providing read-only glimpses off package activity

– Developers open and close the window, but they can't "break and enter"

Window
External
ProgramData

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 86

A Toggle Offers Flexibility
A toggle is an on-off switch that allows a user to modifies

the behavior of programs inside the package
– Without making any code changes to that package

Is feature
turned on?

Application
requests action

no

yes
Take requested

action

Continue normal
execution

Toggles are often used in conjunction with Windows, as the
next example will demonstrate

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 87

Toggle & Window Example:
Variable Trace

I want to be able to watch both reads from and writes to a
variable, and see:

– The current value of the variable
– The new value of the variable if it is being changed
– What program is touching the variable

What are my options?

BEGIN
P_and_L.set_stmt_date (SYSDATE + 12);

IF P_and_L.stmt_date > SYSDATE - 4
THEN

P_and_L.set_stmt_date (SYSDATE - 1);
END IF;

END;

A dozen
programs touch
your data. Which
one is causing
the problem?

A variable trace offers a fine example of a toggle and a window

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 88

Adding Trace Before Each Touch

This approach is full of drawbacks, including:
– Reduces productivity and code quality. You must write the same code

repeatedly (and remember to do it). You must then take out those
calls when done testing, etc.

– DBMS_OUTPUT.PUT_LINE is, in and of itself, problematic. For
example, what if the SQL string contains more than 255 characters?
What if you want to write to a pipe?

BEGIN
DBMS_OUTPUT.PUT_LINE (SYSDATE + 12);
P_and_L.set_stmt_date (SYSDATE + 12);

DBMS_OUTPUT.PUT_LINE (P_and_L.stmt_date);
IF P_and_L.stmt_date > SYSDATE - 4
THEN

DBMS_OUTPUT.PUT_LINE (SYSDATE - 1);
P_and_L.set_stmt_date (SYSDATE - 1);

END IF;
END;

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 89

A Better Idea: Put Trace
Inside "Touch"

Bundle the trace into each program that reads from or writes to
the variable

– Requires no additional coding for users, except to turn on the
trace when needed

Combine the window with a toggle to turn it on and off
– After all, you don't always want to see this information

CREATE OR REPLACE PACKAGE p_and_l
IS

PROCEDURE set_stmt_date (date_in IN DATE);
FUNCTION stmt_date RETURN DATE;

PROCEDURE trc;
PROCEDURE notrc;
FUNCTION tracing RETURN BOOLEAN;

END;

Turn trace on or off,
return current setting.

Get and Set programs
for hidden date variable.

p_and_l.pkg
watch.pkg

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 90

Trace Window & Toggle
Implementation

CREATE OR REPLACE PACKAGE BODY p_and_l
IS

g_trace BOOLEAN := FALSE;

PROCEDURE trc IS
BEGIN

g_trace := TRUE;
END;

PROCEDURE notrc IS
BEGIN

g_trace := FALSE;
END;

FUNCTION tracing RETURN BOOLEAN IS
BEGIN

RETURN g_trace;
END;

/* MORE ON NEXT PAGE
*/
END dynsql;

Global Boolean Flag

Procedures set the
flag's value, while the

function returns
the current value.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 91

Trace Window & Toggle
Implementation

CREATE OR REPLACE PACKAGE BODY p_and_l
IS
PROCEDURE set_stmt_date (date_in IN DATE)

IS
BEGIN

IF tracing
THEN

watch.action ('set_stmt_date', date_in);
END IF;

g_stmt_date := date_in;
END;

END p_and_l;

Check status
of toggle.

Rely on separate
watch package.

By creating a separate package to do the watching, you have
a reusable utility that also hides the implementational details,
giving you lots of flexibility

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 92

The Watch Package
Specification

CREATE OR REPLACE PACKAGE watch
IS

PROCEDURE toscreen;
PROCEDURE topipe;

PROCEDURE action (prog IN VARCHAR2, val IN BOOLEAN);
PROCEDURE action (prog IN VARCHAR2, val IN DATE);
PROCEDURE action (prog IN VARCHAR2, val IN NUMBER);
PROCEDURE action (prog IN VARCHAR2, val IN VARCHAR2);

PROCEDURE show;
END;

Select the
output type.

Overloaded
watch programs.

You have to know when to draw the line
– Watch does not try to determine automatically the program which asked

for the watch (check out PLVcs for a package that can do this)
– Instead, it will just call DBMS_UTILITY.FORMAT_CALL_STACK

watch.pkg

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 93

The Watch Package Body

CREATE OR REPLACE PACKAGE BODY watch
IS

c_pipe_name CONSTANT VARCHAR2(3) := 'watch$trc';

c_screen CONSTANT INTEGER := 0;
c_pipe CONSTANT INTEGER := 1;
g_target INTEGER := 0;

PROCEDURE toscreen
IS
BEGIN

g_target := c_screen;
END;

PROCEDURE topipe
IS
BEGIN

g_target := c_pipe;
END;

Data to manage
output type.

Request a
write to pipe.

Request a
write to screen.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 94

The Watch Package Body
PROCEDURE action (prog IN VARCHAR2, val IN VARCHAR2)
IS

stat INTEGER;
msg PLV.dbmaxvc2;

BEGIN
msg := ' Time: ' || PLV.now || ' Context: ' || prog ||

' Message: ' || val ||
' Callstack ' || DBMS_UTILITY.FORMAT_CALL_STACK;

IF g_target = c_screen
THEN

p.l (msg);

ELSIF g_target = c_pipe
THEN

DBMS_PIPE.RESET_BUFFER;
DBMS_PIPE.PACK_MESSAGE (msg);
stat := DBMS_PIPE.SEND_MESSAGE (c_pipe_name, timeout => 0);

END IF;
END;

Put together
the watch string.

Write to pipe.

Write to screen.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 95

Managing Package Code

Modularize and re-use internal package elements to
reduce code volume and improve maintainability

Split up large packages into separate, smaller packages
-- and hide the split

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 96

Modularize Within Your Package

Modularizing your code is always important, but inside
package bodies modularization is more crucial than
ever before
– And it is also often neglected
– Ugly package bodies can be hidden behind pretty (well-

designed) interfaces
– That works (if you're lucky) for the first production roll-out.

Maintenance is, on the other hand, an unqualified nightmare

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 97

Package bodies can be very hard to control and maintain,
particularly because of the primitive nature of PL/SQL
editors
– Overloading, in particular, carries the potential for greatly

increased code volume and lots of code redundancy
– As you deepen your PL/SQL skills and take on more complex

application development challenges, you must also deepen
your commitment to properly modularizing your code

– Perhaps you should remember that "diamonds are forever"...

Modularize Within Your
Package (Cont.)

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 98

The Overloading Diamond

p.spb

Your challenge: to pull all the facets back to a point, a
single implementation.

Display Data
User View

Display Date Display Number Display String
Package Spec

Display Formatted Text

Package Body

Bottom point of
diamond: the

implementation

Top point of diamond:
"single" program

Diamond facets
are the programs

in the
specification

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 99

Avoiding Redundancy In the Package

Sometimes the need to modularize is obvious
– Large-scale overloading literally begs for a consolidated implementation
– In other situations the pattern and need is less clear, but the long-term

implications if you do not bother to modularize can be severe
You should be an unabashed fanatic when it comes to avoiding
redundant code in your package body
– It might seem like extra work at first, but as scope creeps and

enhancement requests arrive, you will find yourself very thankful for the
initial effort.

– Follow that deceptively simple rule: never repeat a line of code. Instead,
build a private (body-only) function or procedure to encapsulate the
logic

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 100

Code Reuse in the PLVdyn
Package

DBMS_SQL.PARSEDBMS_SQL.
OPEN_CURSOR

dropobj truncate

compiledml_update (3) multiobj

parse_update ddl

open_and_parse

display_data

PLVprs.display_wrap

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 101

Splitting up Large Packages

It is certainly possible to create stored code -- especially
packages -- which become too large
– Too large to compile
– Too large to maintain effectively
– Too large to enhance in a reasonable span of time

What can you do when you have created "monsters"?
– Modularize ruthlessly, avoiding any kind of code repetition by using

nested modules or private programs in the body
– You can also split up large packages into separate program units to

make sure that you can compile -- and incrementally compile --
without lengthy delays

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 102

Lots of Code, Lots of Headaches
The problem is with the body (all that code), not the
specification

Before...

Data
Global, private

data

"Deep" (large)
programs

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 103

After: Break Up that Big Body
Keep the public specification intact so existing
code is not affected by the change

splitpkg.pkg

Data

Create a
"virtual

package"
through

privileges.

Move global
data into
"hidden"
pkg spec.

Shallow
public

package

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 104

Package Construction
Summary

Hide the Data
– Build get-and-set routines (or generate them) and keep

control of your data

Make Your Packages Flexible and Accessible
– Toggles and windows are easy enough to add after the fact
– Help users do things the right way

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 105

PL/SQL Tuning & Best Practices

Modularizing fundamentals
Encapsulation scenarios
The dangers of over-abstraction

Modularization & Encapsulating Logic

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 106

Back to Modularizing
Fundamentals

Modularize to reduce complexity, make your tasks
manageable, and make your resulting code maintainable
Tried-and-tested guidelines for 3GLs hold true for PL/SQL
– Code Complete by Steve McConnell is chock-full of

recommendations
Two to keep in mind:
– Modularize with top-down design; keep executable sections

small and easy to read
– Avoid multiple RETURN statements in executable section

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 107

Keeping Executable Code Tight
Most of the time when we write programs, we end up with big blobs
of code spaghetti

Executable sections that are hundreds, if not thousands of lines long

If someone -- anyone -- is going to be able to maintain and enhance
your code, you need to:

– Keep your executable sections small and self-documenting
– Avoid fanatically any code redundancies

An objective worth aiming for:
Thou Shalt Keep Thy Executable Sections

Down to a Single Page or Screen

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 108

Local Modules Improve Readability
PROCEDURE assign_workload (department_in IN NUMBER)
IS

CURSOR emp_cur
IS

SELECT * FROM emp WHERE deptno = department_in;

PROCEDURE assign_next_open_case
(emp_id_in IN NUMBER, case_out OUT NUMBER) IS BEGIN … END;

FUNCTION next_appointment (case_id_in IN NUMBER) IS BEGIN … END;

PROCEDURE schedule_case
(case_in IN NUMBER, date_in IN DATE) IS BEGIN … END;

BEGIN /* main */
FOR emp_rec IN emp_cur
LOOP

IF analysis.caseload (emp_rec.emp_id) <
analysis.avg_cases (department_in);

THEN
assign_next_open_case (emp_rec.emp_id, case#);
schedule_case

(case#, next_appointment (case#));
END IF;

END LOOP
END assign_workload;

Move blocks of
complex code into
the declaration
section
Replace them
with descriptive
names
The code is now
easier to read and
maintain
You can more
easily identify
areas for
improvement

locmod.sp
utgen.pkb

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 109

Local Modules Avoids Redundancy

PROCEDURE calc_percentages (total_in IN NUMBER)
IS

FUNCTION formatted_pct (val_in IN NUMBER)
RETURN VARCHAR2 IS

BEGIN
RETURN TO_CHAR ((val_in/total_in) * 100, '$999,999');

END;

BEGIN
food_sales_stg := formatted_pct (sales.food_sales);
service_sales_stg := formatted_pct (sales.service_sales);
toy_sales_stg := formatted_pct (sales.toy_sales);

END;

Even if local modules don't have a dramatic impact on code
volume, the extra effort to avoid redundancy today is a valuable
insurance policy against maintenance costs in the future

locmod.sp
hashdemo.sp

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 110

Avoid Multiple RETURNS in Functions
Try to follow the general rule: one way in, one way out
– Multiple RETURNs in the executable section make it error-

prone and difficult to maintain
FUNCTION status_desc (

cd_in IN VARCHAR2)
RETURN VARCHAR2

IS
BEGIN

IF cd_in = 'C'
THEN RETURN 'CLOSED';

ELSIF cd_in = 'O'
THEN RETURN 'OPEN';

ELSIF cd_in = 'I'
THEN RETURN 'INACTIVE';

END IF;
END;

You should, however, include RETURNs in exception
handlers unless the error is "catastrophic"

FUNCTION status_desc (
cd_in IN VARCHAR2)
RETURN VARCHAR2

IS
retval VARCHAR2(20);

BEGIN
IF cd_in = 'C'

THEN retval := 'CLOSED';
ELSIF cd_in = 'O'

THEN retval := 'OPEN';
ELSIF cd_in = 'I'

THEN retval := 'INACTIVE';
END IF;
RETURN retval;

END;

Now it always
RETURNs

something.

multret.sf
explimpl.pkg

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 111

Encapsulating for Protection and
Flexibility

When you encapsulate, you wrap something inside a layer of
code
Here are some scenarios crying out for encapsulation:

Application

Current
Data Structure

Implementation
Encapsulation

Application

Current
Weak Approach

Enhancement
Encapsulation

Application

Native PL/SQL
Functionality

Interception
Layer

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 112

Developing the Encapsulation
Reflex

We'll explore several examples of encapsulation
(a.k.a., abstraction):
– Implementing transaction flexibility
– Working around the limitations of DBMS_OUTPUT
– Storing knowledge so that it won't be forgotten
– Using assertion routines

But first...you have to give yourself (or request)
the time to be creative, to visualize a higher level
of abstraction

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 113

Make the Extra Effort!
The path of "minimal implementation" taken (often) by Oracle:

PACKAGE DBMS_UTILITY
IS

PROCEDURE comma_to_table(
list IN VARCHAR2,
tablen OUT BINARY_INTEGER,
tab OUT uncl_array);

PACKAGE DBMS_UTILITY
IS

PROCEDURE string_to_table (
list IN VARCHAR2,
tab OUT uncl_array,
delim IN VARCHAR2 := ','
);

FUNCTION string_to_table
(list_in VARCHAR2, delim IN VARCHAR2 := ',')
RETURN uncl_array;

With a user community in the millions, you should aim higher

My Dream Implementation...

Allow user definition of the
delimiter, overload for more

flexible usage.

All lists manipulated by PL/SQL
developers are delimited by

commas, right?

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 114

It's Hard to Achieve
Effective Reuse

Quality code that is worth reusing
Central repository for code
Means of locating the right piece of code
Good documentation of code in the repository
Management commitment to supporting reuse

We need all of the following...

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 115

Transaction Management
Flexibility

When you do that you hard-code your
transaction boundaries into your code
– After all, there's no reversing a COMMIT

A simple enough recommendation:
Never call COMMIT; in your PL/SQL code

Sure, we all need to commit now and then.
The question: what is the best way to do that in your code?
Developers often need more flexibility and features than the
COMMIT built-in can provide.

What? You think that's silly?

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 116

Guys Don't Wanna COMMIT -
Reason 1

During test phase, they want to easily reset their test data back
to its original form
– Sure, you could build a script to drop all the objects and recreate

them with the proper data, but that can be time-consuming
Instead, why not just comment out the COMMIT?
– When I'm done testing, I will "un-comment" as needed

PROCEDURE my_monster_application
IS
BEGIN

Insert_a_bunch_of_rows;

Change_lots_more_data;

-- COMMIT;
END;

It's a classic mistake.
You finish debugging your
application -- and then you

change it to make it
"production ready".

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 117

Guys Don't Wanna COMMIT -
Reason 2

They need to update 1M rows and find themselves running out
of rollback segments or getting "snapshot too old" errors
– So you have to commit "every N records"

commit_counter := 0
FOR original_rec IN original_cur
LOOP

translate_data (original_rec);

IF commit_counter >= 10000
THEN

COMMIT;
commit_counter := 0;

ELSE
commit_counter := commit_counter + 1;

END IF;
END LOOP;
COMMIT;

Surely you have
better things to

do with your time
than write code

like this!

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 118

Guys Don't Wanna COMMIT -
Reason 3

They use a non-default rollback segment, and that darn
COMMIT resets the active RB segment to the default
– The "fix" is easy: you just have to remember to call

DBMS_TRANSACTION.USE_ROLLBACK_SEGMENT every time you
execute a COMMIT

– And you have to remember the name of that obscure program!
BEGIN

COMMIT;
DBMS_TRANSACTION.USE_ROLLBACK_SEGMENT ('big_one');

FOR I IN 1 .. max_years
do_stuff;
COMMIT;
DBMS_TRANSACTION.USE_ROLLBACK_SEGMENT ('bigone');

END LOOP;

Here's
one!

Uh oh!
There's

another one!

Whoops! Typo!

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 119

Who Needs Those
Complications?

You've got enough to worry about, without having to
deal with all of that stuff!
Make your coding life simpler by hiding all those
details, all those complications, behind a packaged
interface
– Use toggles and windows in the package to change the

commit behavior of your application…without changing
your application!

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 120

Intercepting and Modifying a
Commit

Use toggles to override and even turn off default processing

Is trace
turned on?

Is commit
turned on?

Display or log
information

yes

no

COMMIT;
yes

Application
requests commit

By calling
PLVcmt.perform_commit

Finally, the real
thing!

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 121

Using the COMMIT Alternative

CREATE OR REPLACE PROCEDURE myapp (counter IN INTEGER)
IS
BEGIN

/* Define the current rollback segment. */
PLVcmt.set_rbseg ('bigseg');

FOR cmtind IN 1 .. counter
LOOP

DELETE FROM emp2 WHERE ROWNUM < 2;

PLVcmt.perform_commit (
'DELETED ' || SQL%ROWCOUNT ||
' on iteration ' || cmtind);

END LOOP;
END;

The following program uses the PL/Vision alternative
to COMMIT

Set the non-default
rollback segment.

While committing,
also pass trace

information.
cmt.tst

plvcmt.sps
plvcmt.spb

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 122

Simplify Incremental Commit Logic

PROCEDURE update_seven_million_rows (every_n IN INTEGER)
IS
BEGIN

PLVcmt.commit_after (every_n);

PLVcmt.init_counter;

FOR original_rec IN original_cur
LOOP

translate_data (original_rec);
PLVcmt.increment_and_commit;

END LOOP;

PLVcmt.perform_commit;
END;

The following program commits every N record
– But the N is not fixed in the code
– Much less code needs to be written

Set the increment and
initialize the counter.

Set the increment and
initialize the counter.

Save any "leftovers".

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 123

The Added Value Adds Up

Some people right now are
surely thinking to
themselves:

Well, it would be nuts to build something that
already exists. So use PLVcmt (Lite or otherwise) if
this technique looks handy.
Otherwise, the next time you find yourself writing
incremental commit logic or wishing you could see
when/if you committed, remember PLVcmt!

This instructor must be
nuts. You actually

expect us to build a
package that contains

18 programs, instead of
just COMMIT?"

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 124

Storing Acquired Knowledge
We learn new techniques after significant investment of research
time, and then we lose access to that new knowledge
– The result is lowered productivity and redundant code

Queries and Code
to Manipulate
Primary Keys

Program 1

Queries and Code
to Manipulate
Primary Keys

Program 2

Queries and Code
to Manipulate
Primary Keys

Program 3

After three hours,
I figured it all out -- and
I buried it in my current

program.

February 1998 April 1998

Where did I put that
stuff on primary keys?
Aw heck, I'll just write it

again.

February 1999

Primary keys, wait a
minute, there's a note
on my terminal: see

checktab.sql.

Give yourself a break and encapsulate as you learn

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 125

Encapsulating Data Dictionary Info

How many times have you ventured deep into the reference
manuals to figure out how to extract information from the data
dictionary on a given topic?
– It's a jungle in there!
– A package is a perfect place to store the knowledge and make it easily

accessible

pky.tst
tabhaslong.sf

PLVpky

PLVinds PLVcons

PLVcolsPLVfkys

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 126

Let's Talk About DBMS_OUTPUT

PL/SQL 1 had ZERO tracing/output capability, causing an
uproar from the developer community
So Oracle Corporation gave us DBMS_OUTPUT, and it:
– Requires the typing of 20 letters just to call the darned thing
– Knows nothing about the Boolean datatype
– Ignores my requests to display blank lines and trims leading blanks
– Raises VALUE_ERROR if the string has more than 255 bytes
– Refuses to display anything until the block finished executing?

How did they manage to make
something this straightforward

so painful to use?

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 127

Overlay
Package

Saving Yourself From
DBMS_OUTPUT

Just say to yourself: "I will never call that thing in my
application, instead I will call my own, better alternative"

Application
Software

DBMS_OUTPUT

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 128

Constructing a Useful Substitute
PROCEDURE p.l (line_in IN VARCHAR2) IS
BEGIN

IF RTRIM (line_in) IS NULL
THEN

DBMS_OUTPUT.PUT_LINE (g_prefix);

ELSIF LENGTH (line_in) > p.linelen
THEN

PLVprs.display_wrap (line_in, linelen);

ELSE
DBMS_OUTPUT.PUT_LINE (g_prefix || line_in);

END IF;

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.ENABLE (1000000);
DBMS_OUTPUT.PUT_LINE (g_prefix || line_in);

END;

Don’t ignore leading
blanks or blank lines.

Wrap (instead of
blowing up on) long

strings.

Anticipate and attempt
to correct common

problems.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 129

Validation of Assumptions

Every module has its assumptions
– A certain set of key data is available, or dates must be

within a specific range
– If you don't validate those assumptions, your programs

will break in unpredictable, ugly ways
Code defensively
– Assume that developers will not use your programs

properly

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 130

Traditional Approach to Validation

Use conditional logic to perform the checks
PROCEDURE calc_totals (

dept_in IN INTEGER, date_in IN DATE) IS
BEGIN

IF dept_in IS NULL
THEN

p.l ('Provide a non-NULL department ID.');
RAISE VALUE_ERROR;

END IF;

IF TRUNC (date_in) NOT BETWEEN
TRUNC (ADD_MONTHS (SYSDATE, -60)) AND TRUNC (SYSDATE)

THEN
p.l ('Date is out of range.');
RAISE VALUE_ERROR;

END IF;

/* Ok, now perform the calculation. */

If department pointer is
NULL, display message &

raise error.

If date is out of range,
display message & raise

error.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 131

The Problems with Business-as-Usual

First, notice the repetition in this approach
– Two IF statements (issues of excessive code volume)
– Two different calls to a display mechanism
– Two different RAISEs

Second, I have exposed or hard-coded the way I check for and
deal with assumption violations
– If I ever decide to change the way I handle violations of assumptions,

I have to go to each IF statement and make the fix
You can avoid all of these problems and end up with a much
more powerful and flexible way of validating assumptions by
using assertion routines

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 132

Taking the Assertion Approach

Call a program instead of writing the code repeatedly
– A generic condition tester, consolidating all logic in one place
– Work in positive terms, asserting that your assumption holds
– Segregate validation logic from "approved" executable logic

PROCEDURE calc_totals
(dept_in IN INTEGER, date_in IN DATE) IS

BEGIN
assert (dept_in IS NOT NULL,

'Provide a non-NULL department ID.');

assert (TRUNC (date_in) BETWEEN
TRUNC (ADD_MONTHS (SYSDATE, -60)) AND TRUNC (SYSDATE),
'Date is out of range.');

/* Ok, now perform the calculation. */
. . .

END;

Ease of use improves
chances of checking all

conditions.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 133

Building a Generic Assertion Program

Puts a thin layer of code
between the application and
the asserting logic
– This gives you flexibility...
– And the ability to recover from

oversights and near misses

PROCEDURE assert (condition_in IN BOOLEAN)
IS
BEGIN

IF NOT condition_in
THEN

RAISE VALUE_ERROR;
END IF;

END;

Let's start with simplest, most naive implementation —

Stops the calling program
if the condition is FALSE.

I need to display a message!

I need to raise a different exception!

And what about Nulls?

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 134

Enhancing the Assertion Program

Make any needed corrections in one place only in your entire
application
– Correct mistakes with a minimum of embarrassment!

PROCEDURE assert (
condition_in IN BOOLEAN,
msg_in IN VARCHAR2 := NULL)

IS
BEGIN

IF NOT condition_in OR condition_in IS NULL
THEN

IF msg_in IS NOT NULL
THEN

DBMS_OUTPUT.PUT_LINE (msg_in);
END IF;
RAISE errpkg.assertion_failure;

END IF;
END;

Ah, what a relief! Now I
know for certain that all

NULLs are trapped.

Special exception just for
assertions.

Display a message if it is
provided.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 135

Offer Specialized Assertions

You will find yourself
writing the same Boolean
expressions repeatedly
– Bury the repetition in a

variety of assertion
programs

The result is that you write
less code, get more
consistent behavior, and
are more likely to actually
test for these conditions

PACKAGE PLV
IS

PROCEDURE assert
(bool_in IN BOOLEAN,
stg_in IN VARCHAR2 := NULL);

PROCEDURE assert_notnull
(val_in IN BOOLEAN|DATE|NUMBER|VARCHAR2,
stg_in IN VARCHAR2 := NULL);

PROCEDURE assert_inrange
(val_in IN DATE,
start_in IN DATE := SYSDATE,
end_in IN DATE := SYSDATE+1,
stg_in IN VARCHAR2 := NULL,
truncate_in IN BOOLEAN := TRUE);

PROCEDURE assert_inrange
(val_in IN NUMBER,
start_in IN NUMBER, end_in IN NUMBER,
stg_in IN VARCHAR2 := NULL);

. . .

plv.sps

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 136

Using Specialized Assertions

Let's take a final look at the calc_totals procedure, this
time using assertion programs designed to check for
specific types of conditions

PROCEDURE calc_totals
(dept_in IN INTEGER, date_in IN DATE)

IS
BEGIN

PLV.assert_notnull (dept_in,
'Provide a non-NULL department ID.');

PLV.assert_inrange (date_in,
ADD_MONTHS (SYSDATE, -60), SYSDATE,
'Date is out of range.');

/* Ok, now perform the calculation. */
. . .

END;

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 137

The Dangers of Excessive
Encapsulation

Suppose that I am building an application that needs to make
extensive use of UTL_FILE to write the contents of a variety of
tables to files

Two possible implementations:
– Create a single, generic program that can write the contents of any

table to any file…HARD!
– Write a new “dump” procedure for each table…TEDIOUS!

I decided to tackle the hard challenge, but do so in a way that
would offer a powerful “repository management” utility to any
use of PL/Vision: PLVrep

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 138

Design Objective of PLVrep
Single language or API that can be used to manipulate the
various kinds of data repositories known to PL/SQL
– Database table
– Collection (index-by table)
– Database pipe
– Operating system file
– String
– Screen

With PLVrep, you (theoretically) don't need to know about
UTL_FILE, SQL, DBMS_SQL, DBMS_PIPE,
DBMS_OUTPUT, etc. Excellent!

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 139

Layers of Abstraction with PLVrep

PLVrep, a Generic Repository Manager

PLVfile PLVpipe PLVdyn
PLVdata

PLVtab

PLVofst
UTL_FILE DBMS_PIPE DBMS_SQL

PLVdate

Dataset
Manager

Generic PL/SQL Repository Functions

Repository-
Specific

Case Converter Data Merge
Process

Application
Server

PL/Vision
Layers

PLVseg

PLVbool

PLVstr

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 140

Flow of Generic Repository Mgt.

Define

Open

Manipulate
Contents

Close

Destroy

Read from repository.
Write to repository.

Analyze status of repository.

Allocates memory to keep track of
information about the repository.

Opens a dynamic cursor,
opens a file, etc. Makes repository
available for read/write operations.

Closes a file, closes a cursor, etc.
Makes repository unavailable

for read/write operations

Deallocates memory from the repository.
Pointer becomes invalid.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 141

PLVrep Tackles "Table to File"
CREATE OR REPLACE PROCEDURE tab2file (

tab IN VARCHAR2, file IN VARCHAR2 := NULL,
delim IN VARCHAR2 := ',')

IS
tid PLS_INTEGER := PLVrep.dbtabid (tab);
fid PLS_INTEGER :=

PLVrep.fileid (NVL (file, tab || '.dat'),
fixedlen=>PLV.ifelse (delim IS NULL, TRUE, FALSE));

BEGIN
PLVrep.tabsegs (tid, tab); -- Make the repositories look like
PLVrep.tabsegs (fid, tab); -- the table.
PLVrep.copy (tid, fid, segdelim => delim);

END;

Write any table to any file.
Five lines of executable code.

Wow!

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 142

Problems with PLVrep
Too complicated
– 143 procedures and functions
– A robust new vocabulary for PL/SQL developers ?!?!

Too generic
– It tries to achieve (and largely accomplishes) too much.
– Feature set overwhelms potential advantage of a “single language”

Too slow
– The tradeoff for being so generic, for hiding so much complexity, is

that PLVrep has to do lots of work on your behalf

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 143

What is High Quality Software?

Is it a "perfectly" designed and
implemented system, built upon
many layers of abstracted,
theoretically reusable code?
– Is such a thing (a) truly desirable

or (b) even possible?

Should I try to build a beautiful
monument to myself or should I
create a living, breathing home that
others can inhabit -- and modify -- as
needed?

or…

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 144

Let's Talk About Habitability

Why would habitability be important?
– Software is written by people; what makes us human must be

taken into account in the software development process
– Software must constantly be changed. It can never possibly be

perfect, because it is supposed to reflect the real world

A closely-related concept: piecemeal growth

"Habitability is the characteristic of a piece of source code that
enables programmers, coders, bug-fixers, and people coming to

the code later in its life to understand its construction and
intentions, and to change it comfortably and confidently.“

… Richard Gabriel, Patterns of Software

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 145

Piecemeal Growth of Software

Gee, it's like someone gave a name to what we are already
and always doing

Let's stop beating ourselves up with a bunch of shoulds:
should have encapsulated, should have reused, should
have abstracted…
– Instead, we should accept it as reality and change our

environment and our processes to support it

"Piecemeal growth is the process of design and implementation in
which software is embellished, modified, reduced, enlarged and

improved through a process of repair rather than of replacement."

… Richard Gabriel, Patterns of Software

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 146

Habitable “Table to File” Program

CREATE OR REPLACE PROCEDURE DEPARTMENT2file (
loc IN VARCHAR2,
file IN VARCHAR2 := 'DEPARTMENT.dat',
delim IN VARCHAR2 := '|'
)

IS
fid UTL_FILE.FILE_TYPE;
line VARCHAR2(32767);

BEGIN
fid := UTL_FILE.FOPEN (loc, file, 'W');

FOR rec IN (SELECT * FROM DEPARTMENT)
LOOP

/* Construct the single line of text.*/
line :=

TO_CHAR (rec.DEPARTMENT_ID) || delim ||
rec.NAME || delim ||
TO_CHAR (rec.LOC_ID);

UTL_FILE.PUT_LINE (fid, line);
END LOOP;

UTL_FILE.FCLOSE (fid);
END;

Easy to understand, but I
have to write a new

procedure for each table.

tab2file.txt

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 147

Resolving the Dilemma w/Code
Generation

So we have a bind:
– Write (and learn how to use)

highly abstracted, complex
code, or…

– Write (and maintain) lots of
code, and make it
decent quality, maintainable
stuff

Perhaps there is a "third
way": context-aware code
generation

Productivity

Artistry

Quality

Application
Specificity

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 148

Generate "Habitable" Code?

[STOREIN][objname]2file.sp
CREATE OR REPLACE PROCEDURE [objname]2file (

loc IN VARCHAR2,
file IN VARCHAR2 := '[objname].dat',
delim IN VARCHAR2 := '|'
)

IS
fid UTL_FILE.FILE_TYPE;

[IF]oraversion[IN]8.0,8.1
line VARCHAR2(32767);

[ELSE]
line VARCHAR2(1023);

[ENDIF]
BEGIN

fid :=
UTL_FILE.FOPEN (loc, file, 'W');

FOR rec IN (SELECT * FROM [objname])
LOOP

line :=
[FOREACH]col

[IF][coldatatype][eq]VARCHAR2
...

Template captures pattern.

Utility generates code from
template for a specific object.

Resulting code is readily
understandable and easily

maintained.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 149

Encapsulation Recommendations
Build small encapsulations/abstractions
– If I need to take a week-long class to learn how to use the

abstraction/library, I will never really (re)use that code
Keep hierarchies shallow as long as possible
– If you make a mistake along the way, you can fix it with a minimum of

impact
Build incrementally
– Avoid “master plans”; build in direct response to programmer needs

Don't accept performance trade-offs for abstraction
– It is very rarely justified in a production environment

Find or build tools/utilities to leverage abstractions
– The toughest challenge of all!

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 150

PL/SQL Best Practices

Developing an
Exception Handling

Architecture

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 151

Exception Handling in PL/SQL

The PL/SQL language provides a powerful, flexible "event-
driven" architecture to handle errors which arise in your programs
– No matter how an error occurs, it will be trapped by the corresponding

handler
Is this good? Yes and no
– You have many choices in building exception handlers
– There is no one right answer for all situations, all applications
– This usually leads to an inconsistent, incomplete solution

Handle Exceptions

Execute Application Code

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 152

You Need Strategy &
Architecture

To build a robust PL/SQL application, you need to decide on
your strategy for exception handling, and then build a code-
based architecture for implementing that strategy
In this section, we will:
– Explore the features of PL/SQL error handling to make sure we have

common base of knowledge
– Examine the common problems developers encounter with exception

handling
– Construct a prototype for an infrastructure component that enforces a

standard, best practice-based approach to trapping, handling and
reporting errors The PL/Vision PLVexc

package is a more complete
implementation.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 153

Flow of Exception Handling

PROCEDURE calc_profits
IS BEGIN

numeric_var := 'ABC';

EXCEPTION
WHEN VALUE_ERROR THEN

log_error;
RAISE;

END;

PROCEDURE financial_review
IS
BEGIN

calc_profits (1996);

calc_expenses (1996);

DECLARE
v_str VARCHAR2(1);

BEGIN
v_str := 'abc';

EXCEPTION
WHEN VALUE_ERROR THEN

. . .
END;

EXCEPTION
WHEN OTHERS
THEN

...
END;

PROCEDURE calc_expenses
IS BEGIN

...
EXCEPTION

WHEN NO_DATA_FOUND
THEN

log_error;
END;

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 154

Scope and Propagation
Reminders

You can never go home
– Once an exception is raised in a block, that block's executable section

closes. But you get to decide what constitutes a block
Once an exception is handled, there is no longer an exception
(unless another exception is raised)
– The next line in the enclosing block (or the first statement following the

return point) will then execute
If an exception propagates out of the outermost block, then that
exception goes unhandled
– In most environments, the host application stops
– In SQL*Plus and most other PL/SQL environments, an automatic

ROLLBACK occurs

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 155

What the Exception Section Covers

Declarations

Executable
Statements

Exception
Handlers

BEGIN

EXCEPTION

END

DECLARE

The exception section only handles exceptions raised in the
executable section of a block
– For a package, this means that the exception section only handles

errors raised in the initialization section

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 156

Continuing Past an Exception
Emulate such behavior by enclosing code within its own block

PROCEDURE cleanup_details (id_in IN NUMBER) IS
BEGIN

DELETE FROM details1 WHERE pky = id_in;
DELETE FROM details2 WHERE pky = id_in;

END;

PROCEDURE cleanup_details (id_in IN NUMBER) IS
BEGIN

BEGIN
DELETE FROM details1 WHERE pky = id_in;

EXCEPTION WHEN OTHERS THEN NULL;
END;
BEGIN

DELETE FROM details2 WHERE pky = id_in;
EXCEPTION WHEN OTHERS THEN NULL;
END;

END;

All or
Nothing

The
"I Don't Care"

Exception
Handler

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 157

Exceptions and DML
DML statements are not rolled back by an exception unless it
goes unhandled
– This gives you more control over your transaction, but it also can

lead to complications
– What if you are logging errors to a database table? That log is then

a part of your transaction
You may generally want to avoid "unqualified" ROLLBACKs
and instead always specify a savepoint
EXCEPTION

WHEN NO_DATA_FOUND THEN
ROLLBACK TO last_log_entry;
INSERT INTO log VALUES (...);
SAVEPOINT last_log_entry;

END;

lostlog*.sql
rb.pkg

But it can get
complicated!

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 158

Client Side Server Side

Application-Specific Exceptions

Oracle Forms
Application

Emp
Table

Update, Delete, Insert

DB Trigger

Stored
Program

Send Error Info Back

Raising and handling an exception specific to the application requires
special treatment

– This is particularly true in a client-server environment with Oracle
Developer

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 159

Communicating an Application Error

IF :NEW.birthdate > ADD_MONTHS (SYSDATE, -1 * 18 * 12)
THEN

RAISE_APPLICATION_ERROR
(-20070, ‘Employee must be 18.’);

END IF;

Use the RAISE_APPLICATION_ERROR built-in procedure to
communicate an error number and message across the client-server
divide
– Oracle sets aside the error codes between -20000 and -20999 for your

application to use. RAISE_APPLICATION_ERROR can only be used those
error numbers

RAISE_APPLICATION_ERROR
(num binary_integer,
msg varchar2,
keeperrorstack boolean default FALSE);

The following code from a database triggers shows a typical usage of
RAISE_APPLICATION_ERROR

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 160

BEGIN
INSERT INTO emp (empno, deptno, birthdate)

VALUES (100, 200, SYSDATE);
EXCEPTION

WHEN OTHERS THEN
IF SQLCODE = -20070 ...

END;

Handling App. Specific Exceptions
– Handle in OTHERS with check against SQLCODE...

DECLARE
emp_too_young EXCEPTION;
PRAGMA EXCEPTION_INIT (emp_too_young, -20070);

BEGIN
INSERT INTO emp (empno, deptno, birthdate)

VALUES (100, 200, SYSDATE);
EXCEPTION

WHEN emp_too_young THEN ...
END;

Server-side
Database

Server-side
Database

Or handle with named exception, declared on client side ...

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 161

The Ideal But Unavailable
Solution

-- Declare the exception in one place (server) and reference it (the error number or
name) throughout your application.

CREATE OR REPLACE PACKAGE emp_rules IS
emp_too_young EXCEPTION;

END;

BEGIN
INSERT INTO emp VALUES (100, 200, SYSDATE);

EXCEPTION
WHEN emp_rules.emp_too_young THEN ...

END;

IF birthdate > ADD_MONTHS (SYSDATE, -216) THEN
RAISE emp_rules.emp_too_young;

END IF;

Server side pkg
defines exception.

Database trigger
raises exception.

Client side block
handles exception.

But this won't work with Oracle Developer! If it's got a dot and is defined
on the server, it can only be a function or procedure, not an exception or
constant or variable...

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 162

Blocks within Blocks I
– What information is displayed on your screen when you

execute this block?
DECLARE

aname VARCHAR2(5);
BEGIN

BEGIN
aname := 'Justice';
DBMS_OUTPUT.PUT_LINE (aname);

EXCEPTION
WHEN VALUE_ERROR
THEN

DBMS_OUTPUT.PUT_LINE ('Inner block');
END;
DBMS_OUTPUT.PUT_LINE ('What error?');

EXCEPTION
WHEN VALUE_ERROR
THEN

DBMS_OUTPUT.PUT_LINE ('Outer block');
END;

excquiz1.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 163

Blocks within Blocks II
– What information is displayed on your screen when you

execute this block?
DECLARE

aname VARCHAR2(5);
BEGIN

DECLARE
aname VARCHAR2(5) := 'Justice';

BEGIN
DBMS_OUTPUT.PUT_LINE (aname);

EXCEPTION
WHEN VALUE_ERROR THEN

DBMS_OUTPUT.PUT_LINE ('Inner block');
END;
DBMS_OUTPUT.PUT_LINE ('What error?');

EXCEPTION
WHEN VALUE_ERROR THEN

DBMS_OUTPUT.PUT_LINE ('Outer block');
END;

excquiz2.sql
excquiz2a.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 164

Blocks within Blocks III
What do you see when you execute this block?

DECLARE
aname VARCHAR2(5);

BEGIN
<<inner>>
BEGIN

aname := 'Justice';
EXCEPTION

WHEN VALUE_ERROR THEN
RAISE NO_DATA_FOUND;

WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE ('Inner block');

END inner;

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('Outer block');
END;

excquiz3.sql
excquiz6.sql
excquiz6a.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 165

Blocks within Blocks IV
What do you see when you execute this block?
– Assume that there are no rows in emp where deptno equals -15

DECLARE
v_totsal NUMBER;
v_ename emp.ename%TYPE;

BEGIN
SELECT SUM (sal) INTO v_totsal FROM emp WHERE deptno = -15;

p.l ('Total salary', v_totsal);

SELECT ename INTO v_ename
FROM emp
WHERE sal =

(SELECT MAX (sal) FROM emp WHERE deptno = -15);

p.l ('The winner is', v_ename);
EXCEPTION

WHEN NO_DATA_FOUND THEN
p.l ('Outer block');

END;
excquiz4.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 166

Taking Exception to My Exceptions

What do you see when you execute this block?
DECLARE

d VARCHAR2(1);
no_data_found EXCEPTION;

BEGIN
SELECT dummy INTO d

FROM dual
WHERE 1=2;

IF d IS NULL
THEN

RAISE no_data_found;
END IF;

EXCEPTION
WHEN no_data_found
THEN

DBMS_OUTPUT.PUT_LINE ('No dummy!');
END;

excquiz5.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 167

Where Did the Error Occur?

When an error occurs inside your code, the most
critical piece of information is the line number of the
program in which the error was raised
How can you obtain this information?

disperr*.tst

A. DBMS_UTILITY.FORMAT_ERROR_STACK
B. Unhandled exception
C. DBMS_UTILITY.FORMAT_CALL_STACK
D. Write error information to log file or table

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 168

It gets the job done…but does the end justify the means?
FUNCTION totalsales (year IN INTEGER) RETURN NUMBER
IS

return_nothing EXCEPTION;
return_the_value EXCEPTION;
retval NUMBER;

BEGIN
retval := calc_totals (year);

IF retval = 0 THEN
RAISE return_nothing;

ELSE
RAISE return_the_value;

END IF;

EXCEPTION
WHEN return_the_value THEN RETURN retval;
WHEN return_nothing THEN RETURN 0;

END;

What, No GOTO?

isvalinlis.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 169

An Exceptional Package

So I create the valerr package and then execute the following
command. What is displayed on the screen?

PACKAGE valerr
IS
FUNCTION

get RETURN VARCHAR2;
END valerr;

SQL> EXECUTE p.l (valerr.get);

PACKAGE BODY valerr
IS

v VARCHAR2(1) := ‘abc’;
FUNCTION get RETURN VARCHAR2 IS
BEGIN

RETURN v;
END;

BEGIN
p.l ('Before I show you v...');

EXCEPTION
WHEN OTHERS THEN

p.l (‘Trapped the error!’);
END valerr;

valerr.pkg
valerr2.pkg

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 170

Desperately Seeking Clarity

Hopefully everyone now feels more confident in their
understanding of how exception handling in PL/SQL
works

Let's move on to an examination of the challenges you
face as you build an application and seek to build into
it consistent error handling

After that, we take a look at how you might build a
generic, reusable infrastructure component to handle
the complexities of exception handling

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 171

All-Too-Common Handler Code

If every developer writes exception handler code on their own, you end up
with an unmanageable situation

– Different logging mechanisms, no standards for error message text,
inconsistent handling of the same errors, etc.

EXCEPTION
WHEN NO_DATA_FOUND THEN

v_msg := 'No company for id ' || TO_CHAR (v_id);
v_err := SQLCODE;
v_prog := 'fixdebt';
INSERT INTO errlog VALUES

(v_err, v_msg, v_prog, SYSDATE, USER);

WHEN OTHERS THEN
v_err := SQLCODE;
v_msg := SQLERRM;
v_prog := 'fixdebt';
INSERT INTO errlog VALUES

(v_err, v_msg, v_prog, SYSDATE, USER);
RAISE;

I am showing
everyone how the

log is kept.

Lots of
redundant code.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 172

Some Dos and Don'ts
Make decisions about exception handling before starting your
application development. Here are my recommendations:

DISCOURAGE individual developer usage of
RAISE_APPLICATION_ERROR, PRAGMA
EXCEPTION_INIT, explicit (hard-coded) -
20,NNN error numbers, hard-coded error
messages, exposed exception handling logic.

ENCOURAGE use of standardized components,
including programs to raise application-specific
exception, handle (log, re-raise, etc.) errors, and
rely on pre-defined error numbers and messages.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 173

Checking Standards Compliance

Whenever possible, try to move beyond document-based
standards
– Instead, build code to both help people deploy standards and

create tools to help verify that they have complied with standards
CREATE OR REPLACE PROCEDURE progwith (str IN VARCHAR2)
IS

CURSOR objwith_cur (str IN VARCHAR2)
IS

SELECT DISTINCT name
FROM USER_SOURCE
WHERE UPPER (text) LIKE '%' || UPPER (str) || '%';

BEGIN
FOR prog_rec IN objwith_cur (str)
LOOP

p.l (prog_rec.name);
END LOOP;

END;

valstd.pkg

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 174

Pre-Defined -20,NNN Errors
PACKAGE errnums
IS

en_general_error CONSTANT NUMBER := -20000;
exc_general_error EXCEPTION;
PRAGMA EXCEPTION_INIT

(exc_general_error, -20000);

en_must_be_18 CONSTANT NUMBER := -20001;
exc_must_be_18 EXCEPTION;
PRAGMA EXCEPTION_INIT

(exc_must_be_18, -20001);

en_sal_too_low CONSTANT NUMBER := -20002;
exc_sal_too_low EXCEPTION;
PRAGMA EXCEPTION_INIT

(exc_sal_too_low , -20002);

max_error_used CONSTANT NUMBER := -20002;

END errnums;

Assign Error
Number

Declare Named
Exception

Associate
Number w/Name

msginfo.pkgBut don't write this code manually!

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 175

Reusable Exception Handler
Package

PACKAGE errpkg
IS

PROCEDURE raise (err_in IN INTEGER);

PROCEDURE recNstop (err_in IN INTEGER := SQLCODE,
msg_in IN VARCHAR2 := NULL);

PROCEDURE recNgo (err_in IN INTEGER := SQLCODE,
msg_in IN VARCHAR2 := NULL);

FUNCTION errtext (err_in IN INTEGER := SQLCODE)
RETURN VARCHAR2;

END errpkg;

Generic Raise

Record
and Stop

Record
and Continue

Message Text
Consolidator errpkg.pkg

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 176

Implementing a Generic RAISE
Hides as much as possible the decision of whether to do a normal
RAISE or call RAISE_APPLICATION_ERROR
– Also forces developers to rely on predefined message text

PROCEDURE raise (err_in IN INTEGER) IS
BEGIN

IF err_in BETWEEN -20999 AND -20000
THEN

RAISE_APPLICATION_ERROR (err_in, errtext (err_in));
ELSIF err_in IN (100, -1403)
THEN

RAISE NO_DATA_FOUND;
ELSE

PLVdyn.plsql (
'DECLARE myexc EXCEPTION; ' ||
' PRAGMA EXCEPTION_INIT (myexc, ' ||

TO_CHAR (err_in) || ');' ||
'BEGIN RAISE myexc; END;');

END IF;
END;

Re-raise almost
any exception using

Dynamic PL/SQL!

Enforce use
of standard

message

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 177

Raising Application Specific Errors

With the generic raise procedure and the pre-defined error numbers,
you can write high-level, readable, maintainable code
– The individual developers make fewer decisions, write less code, and

rely on pre-built standard elements
Let's revisit that trigger logic using the infrastructure elements...

PROCEDURE validate_emp (birthdate_in IN DATE) IS
BEGIN

IF ADD_MONTHS (SYSDATE, 18 * 12 * -1) < birthdate_in
THEN

errpkg.raise (errnums.en_must_be_18);
END IF;

END;

No more hard-coded
strings or numbers.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 178

Deploying Standard Handlers
The rule: developers should only call a pre-defined handler inside
an exception section
– Make it impossible for developers to not build in a consistent, high-quality

way
– They don't have to make decisions about the form of the log and how the

process should be stopped
EXCEPTION

WHEN NO_DATA_FOUND
THEN

errpkg.recNgo (
SQLCODE,
' No company for id ' || TO_CHAR (v_id));

WHEN OTHERS
THEN

errpkg.recNstop;
END;

The developer simply
describes

the desired action.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 179

Implementing a Generic Handler
Hides all details of writing to the log, executing the handle action
requested, etc.

PACKAGE BODY errpkg
IS

PROCEDURE recNgo (err_in IN INTEGER := SQLCODE,
msg_in IN VARCHAR2 := NULL)

IS
BEGIN

log.put (err_in, NVL (msg_in, errtext (err_in)));
END;

PROCEDURE recNstop (err_in IN INTEGER := SQLCODE,
msg_in IN VARCHAR2 := NULL)

IS
BEGIN

recNgo (err_in, msg_in);
errpkg.raise (err_in);

END;

END errpkg;

Pre-existing package
elements are re-used.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 180

Retrieving Consolidated
Message Text

Or, as shown in the errpkg.pkg file, you can call the underlying
msginfo packaged function to retrieve the text from that standardized
component

FUNCTION errtext (err_in IN INTEGER := SQLCODE) RETURN VARCHAR2 IS
CURSOR txt_cur IS

SELECT text FROM message_text
WHERE texttype = 'EXCEPTION' AND code = err_in;

txt_rec txt_cur%ROWTYPE;
BEGIN

OPEN txt_cur;
FETCH txt_cur INTO txt_rec;
IF txt_cur%NOTFOUND THEN

txt_rec.text := SQLERRM (err_in);
END IF;
RETURN txt_rec.text;

END;

You can selectively
override default,

cryptic Oracle messages.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 181

Added Value of a Handler
Package

Once you have all of your developers using the handler
package, you can add value in a number of directions:
– Store templates and perform runtime substitutions
– Offer the ability to "bail out" of a program, no matter how many

layers of nesting lie between it and the host application

exc.tst
exc2.tst
exc3.tst

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 182

An Exception Handling Architecture
Summary

Make Sure You Understand How it All Works
– Exception handling is tricky stuff

Set Standards Before You Start Coding
– It's not the kind of thing you can easily add in later

Use Standard Infrastructure Components
– Everyone and all programs need to handle errors the

same way

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 183

PL/SQL Tuning & Best Practices

Control Contention
in

Multi-User Systems

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 184

Sharing Resources

Anyone writing single-user applications can skip
this topic.
– Any takers?

Contention for shared resources can skewer
performance of the most perfectly written pl/sql
programs.
Many contention issues have their origin in
application design and implementation.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 185

Types of Contention

Lock contention: waiting to access shared data
Latch contention: waiting to access Oracle internal
resources
– Can be difficult to diagnose properly, but there are classic

cases to avoid
I/O contention: waiting to read/write to disk
– Usually a DBA datafile / tablespace distribution issue

When user processes WAIT, algorithm efficiency
doesn’t matter at all!

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 186

SQL Locking

Locks released at transaction commit (rollback)
Lock only what you need and release as soon as
possible to avoid contention

LOCK TABLE emp in EXCLUSIVE
MODE;

SELECT * FROM emp FOR UPDATE;

UPDATE emp SET sal = sal*1.1
WHERE dept = 10;

SELECT * FROM dept;

Only one user can modify any
row in table

Row-share lock for
all rows selected

Row-exclusive lock
for all rows updated

No data locks taken

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 187

resource_busy EXCEPTION;
PRAGMA EXCEPTION_INIT(resource_busy,-54);
tries INTEGER := 1;
LOOP
EXIT WHEN locked OR tries = 3;

BEGIN
SELECT * FROM emp WHERE dept = 10
FOR UPDATE NOWAIT;
locked := TRUE;

EXCEPTION
WHEN resource_busy
THEN tries := tries + 1; DBMS_LOCK.SLEEP(.5);

END;
END LOOP;

Controlled lock waiting

NOWAIT raises ORA-54 when row(s) cannot be locked
Instead of waiting forever, catch exception and try again ½
second later (up to 3 times)

Oracle also exposes
lock mgmt services to

PL/SQL

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 188

Deadlock (name says it)

Each session needs A and B to complete transaction
– And each holds what the other needs

One session’s transaction will be rolled back, which?
Avoid deadlock by locking resources in consistent order
– Lock A first, then B and deadlock will not occur
– Another good reason to encapsulate transactions

Resource A

Resource B

User 1

User 2
Lock held

Lock held

Lock requested

Lock requested

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 189

Latching

Latches are like very short duration locks
Latches protect Oracle internal (SGA) data structures
– Your application cannot ask for a latch explicitly

All SQL activity involves numerous latches
– Latching is not a problem in itself
– Contention arises when too many processes ask for

latches too fast that are being held too long
Latch contention manifests as excess CPU
consumption and session waiting

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 190

SQL processing latches

SELECT * FROM EMP;

UPDATE EMP SET name = ‘JB’
WHERE id = ‘123’;

COMMIT;

library cache: lookup cached SQL object
cache buffers chains: lookup data blocks in
buffer cache
cache buffers lru chain: add new blocks to buffer
cache LRU lists

library cache: lookup
cached SQL
shared pool: allocate
space for new SQL

redo allocation: get space
in redo buffer
redo copy: copy changes to
buffer

You can’t prevent latching
but you can avoid many
latching problems.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 191

Controllable latch contention

Library cache and shared pool latches
– Too much hard parsing => not enough SQL sharing
– Use bind variables, not literal concatenation
– Avoid object invalidation/recompilation

Redo allocation and redo copy latches
– May be caused by very high commit frequency
– Another good reason to use a commit encapsulation

package

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 192

ORA-1555: Snapshot too old

Common cause:
– Batch update driven by cursor on large result set
– Other processes updating cursor table(s)
– Concurrency problem, not rollback segment sizing

False cure: commit more frequently
– Problem is NOT rollback for updates, but rollback for read-

consistent image of cursor (unaffected by commit)
True cure: close and re-open the driving cursor
– Process the large result set in a sequence of read-

consistent images

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 193

ORA-1555 Candidate

Oracle tries to keep read-consistent image of
big_result_cur (as/of loop start time) until loop
finishes
If big_table rows modified by other processes this
can become difficult (or impossible = ORA-1555)

CURSOR big_result_cur IS
SELECT * FROM big_table;

FOR result_rec IN big_result_cur
LOOP

/* do some DML based on result_rec */
END LOOP;

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 194

Avoiding ORA-1555
last_id_processed INTEGER := 0;
Batch_size INTEGER := 1000;

CURSOR result_set_cur(Lid integer) IS
SELECT * FROM big_table BT
WHERE BT.id > Lid
ORDER BY BT.id ASC;

result_set_rec result_set_cur%ROWTYPE;

OPEN result_set_cur(last_id_processed);
LOOP

FETCH result_set_cur INTO result_set_rec;
EXIT WHEN result_set_cur%NOTFOUND;

/* process result_set_rec */
last_id_processed := result_set_rec.id;

IF MOD(result_set_cur%ROWCOUNT,batch_size=0)
THEN CLOSE result_set_cur; COMMIT;

OPEN result_set_cur(last_id_updated);
END IF;

END LOOP; COMMIT;

Parameterized cursor
pushes through successive

result sets

Assumes results can
be ordered by id and

all ids > 0

Release read-consistent
image of result_set_cur
and open new one, this
avoids the ORA-1555

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 195

Dangers of Dynamic SQL

Common tradeoff: flexibility vs. performance
Runtime compilation is always slower than pre-
compilation
– Extra parsing/optimization (CPU) and memory allocation

May only be problematic when volume is large
– So don’t be dogmatic about it!

Dynamic DDL can really be a killer
– Library cache object invalidation/recompilation

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 196

Synonyms add overhead

Public and private synonyms both add additional
overhead vs. schema.objname references
– Both incremental CPU and shared pool memory overhead

When many database objects are referenced by
many users on high-throughput systems...
– It may pay to use fully qualified object references
– BUT this is a form of hard-coding that can have

maintenance implications

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 197

PL/SQL Tuning & Best Practices

Optimize Algorithms

Avoid Unnecessary Code Execution
Answer the Question Being Asked
Do Lots of Stuff At the Same Time
Avoid the Heavy Lifting

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 198

Avoid Unnecessary Code
Execution

Avoid repetitive code execution
Optimal collection scanning code
Minimize database trigger firing

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 199

Avoid Repetitive Code Execution
A classic problem area:
PROCEDURE process_data (nm_in IN VARCHAR2) IS
BEGIN

FOR rec IN pkgd.cur
LOOP

process_rec (UPPER (nm_in), rec.total_production);
END LOOP;

END;

Easy solution:
PROCEDURE process_data (nm_in IN VARCHAR2) IS

v_nm some_table.some_column%TYPE := UPPER (nm_in);
BEGIN

FOR rec IN pkgd.cur
LOOP

process_rec (v_nm, rec.total_production);
END LOOP;

END;

Sometimes the problem is less obvious...
effdsql.tst
loadlots*.*

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 200

Optimal Collection Scanning Code

Oracle offers three types of collections (index-by
tables, nested tables and variable arrays) and a
set of methods to modify/access those collections
A common requirement is to scan the contents of
these collections. What is the best way to do that?
Considerations as you think about writing such code:
– Index-by tables are not necessarily sequentially filled
– References to undefined rows raise the

NO_DATA_FOUND exception

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 201

Using the FOR Loop

Methods used: COUNT, FIRST and LAST
– The COUNT method is used to make sure there is something in

the table
– If not, FIRST and LAST return NULL and a numeric FOR loop

from NULL to NULL raises VALUE_ERROR
BEGIN

IF birthdays.COUNT > 0
THEN

FOR rowind IN birthdays.FIRST .. birthdays.LAST
LOOP

DBMS_OUTPUT.PUT_LINE (birthdays(rowind).best_present);
END LOOP;

END IF;
END;

But I am still making a dangerous assumption about the contents of
this PL/SQL table!

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 202

Protection in the FOR Loop
If I want to make sure that my PL/SQL table references
never raise NO_DATA_FOUND, I should use the EXISTS
operator
BEGIN

IF birthdays.COUNT > 0
THEN

FOR rowind IN birthdays.FIRST .. birthdays.LAST
LOOP

IF birthdays.EXISTS (rowind)
THEN

DBMS_OUTPUT.PUT_LINE
(birthdays(rowind).best_present);

END IF;
END LOOP;

END IF;
END;

Still, this is far less than ideal as far as algorithms go. Why?

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 203

Optimal Table Scanning Code
Using the FIRST and NEXT methods, I don't have to worry
about table sparseness and I don't have to use EXISTS to
check my next row for existence
– NEXT returns NULL when you are at the highest row
– To scan in reverse, start with LAST and use PRIOR

Note: you can also take advantage of various sorting algorithms,
depending on how the data is stored in a densely-filled collection

rowind PLS_INTEGER := birthdays.FIRST;
BEGIN

LOOP
EXIT WHEN rowind IS NULL;
DBMS_OUTPUT.PUT_LINE

(birthdays(rowind).best_present);
rowind := birthdays.NEXT (rowind);

END LOOP;
END;

plsqlloops.sp

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 204

Quiz!

How can I optimize this code?
PROCEDURE exec_line_proc (line IN INTEGER)
IS
BEGIN

IF line = 1 THEN exec_line1; END IF;
IF line = 2 THEN exec_line2; END IF;
IF line = 3 THEN exec_line3; END IF;
...
IF line = 2045 THEN exec_line2045; END IF;

END;

slowalg_q2.sql
slowalg_a2.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 205

Minimize Firing of Database Triggers

Use the WHEN and UPDATE OF clauses
– Trigger will not fire unless the NEW salary is different from the OLD

-- and both are NOT NULL
– Trigger will not fire unless salary or commission are referenced in

the UPDATE statement
Disable trigger execution when you are certain of the data.
– Commonly applicable to batch processes
– The settrig.sp file contains a generalized mechanism to do this

CREATE OR REPLACE TRIGGER check_raise
AFTER UPDATE OF salary, commission
ON employee FOR EACH ROW

WHEN (NVL (OLD.salary, -1) != NVL (NEW.salary, -1) OR
NVL (OLD.commission, -1) != NVL (NEW.commission, -1))

BEGIN
...

settrig.sp

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 206

Answer the Question
Being Asked

Are you a good listener?
Listening to what other people
say is an excellent skill to have
and develop -- and it applies to
programming as well
All too often, we don't listen or
read carefully enough to the
requirement -- and we answer
the wrong question

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 207

Do We Have Any Rows?

How much is wrong with this code?

CREATE OR REPLACE PROCEDURE drop_dept
(deptno_in IN NUMBER, reassign_deptno_in IN NUMBER)

IS
temp_emp_count NUMBER;

BEGIN
-- Do we have any employees in this department to transfer?
SELECT COUNT(*)
INTO temp_emp_count
FROM emp WHERE deptno = deptno_in;

-- Reassign any employees
IF temp_emp_count >0
THEN

UPDATE emp
SET deptno = reassign_deptno_in

WHERE deptno = deptno_in;
END IF;

DELETE FROM dept WHERE deptno = deptno_in;
COMMIT;

END drop_dept;

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 208

The Minimalist Approach
At least one row?
BEGIN

OPEN cur;
FETCH cur INTO rec;
IF cur%FOUND
THEN

...

BEGIN
OPEN cur;
FETCH cur INTO rec;
IF cur%FOUND
THEN

FETCH cur INTO rec;
IF cur%FOUND
THEN

...

Use an explicit cursor,
fetch once and then

check the status.

Use an explicit cursor,
fetch once and then fetch
again. "Two times" is the

charm.

atleastone.sql

More than one row?

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 209

Do Lots of Stuff At the Same Time

Big computers, powerful software...we should do all
we can to take full advantage of those resources
PL/SQL does not offer support for multi-threading,
but you do have some options for simultaneous
execution of multiple programs in your application:
– Run programs in parallel with DBMS_PIPE
– Schedule asynchronous execution with DBMS_JOB

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 210

Parallelize Your Code with Pipes

Oracle uses DBMS_PIPE to improve RDBMS performance
– Parallel updates of indexes, partitioned queries, etc.

You can do the same for your application if:
– You have multiple CPUs available
– You have processes which can run in parallel; they mustn't be inter-

dependent

Process A Process B Process C

S t a r t

Synchronize
&

Continue

parallel.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 211

Schedule Asynchronous Execution
You can also use DBMS_JOB to execute programs in another
Oracle session
– The job can be run immediately, or at a specific time (and at a specific

interval. You will probably need to COMMIT to get the job going
– DBMS_JOB does not offer any inter-job relationships, so you have to

built in a pause for confirmation and so on
DECLARE

job# PLS_INTEGER;
PROCEDURE doit (job IN VARCHAR2) IS BEGIN

DBMS_JOB.SUBMIT (
job#, 'calc_comp (''' || job || ''')', SYSDATE, NULL);

COMMIT;
END;

BEGIN
doit ('CLERK');
doit ('VP');
doit ('PROGRAMMER');

END;

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 212

Avoid the Heavy Lifting
For reasons of both efficiency and productivity, you should
always check to see if a solution is already available before
you build it yourself
– If Oracle wrote it, it is probably implemented in C, increasing the

likelihood that it will run faster than what you produce
Familiarize yourself with the built-in functionality, from
STANDARD-based functions to the built-in packages
Consider the following requirements:
– Return TRUE if a string is a valid number, false otherwise
– Search for the Nth occurrence of a substring within a string, and

return the rest of the string from that point isnum*.*
fromnth.*

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 213

Quiz!
Assuming that process_employee_history has been
optimized (a big assumption!), how else can we improve the
performance of this code?

DECLARE
CURSOR emp_cur
IS

SELECT last_name, TO_CHAR (SYSDATE, 'MM/DD/YYYY') today
FROM employee;

BEGIN
FOR rec IN emp_cur
LOOP

IF LENGTH (rec.last_name) > 20
THEN

rec.last_name := SUBSTR (rec.last_name, 1, 20);
END IF;
process_employee_history (rec.last_name, rec.today);

END LOOP;
END;

slowalg_q1.sql
slowalg_a1.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 214

Quiz!
Construct a schedule of lease payments for a store and save
them in a PL/ SQL table
– For each of 20 years, the lease amount is calculated as the sum of

lease amounts for the remaining years
– The total lease for year 10, in other words, would consist of the

lease amounts (fixed and variable) for years 10 through 20

Functions returning the lease amounts are provided
(dummies): pv_of_fixed, pv_of_variable
How best can we implement this requirement?

presvalue.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 215

Quiz!

LTRIM and RTRIM trim specified characters, but do
not recognize patterns
Challenge: build a function that combines trim
capabilities with REPLACE, which replaces patterns
instead of individual characters

lstrip*.sf
lstrip.tst

SQL> BEGIN
2 p.l (ltrim ('abcabcbadef', 'abc'));
3 p.l (lstrip ('abcabcbadef', 'abc', 2));
4 END;
5 /

def
badef

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 216

PL/SQL Tuning and Best
Practices

Use Data Structures Efficiently

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 217

Use Data Structures Efficiently

When VARCHAR2 is not really VARCHAR2...
Rely on PLS_INTEGER
Avoid Implicit Conversions
Minimizing Transfer of Large Structures
Don't Use NOT NULL Constraints
Defer CPU and Memory Utilization Until Needed
Cache Data with Packages
Leverage Oracle Hashing

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 218

When VARCHAR2 is not really
VARCHAR2

Before Oracle8, variables declared as VARCHAR2 were
treated computationally as variable length, but memory was
allocated as fixed-length. Beware!
On Oracle 7.3, you can use the following script to soak up all
the real memory available in your system:

Note: memory is released when you end the session

DECLARE
TYPE big_type IS TABLE OF VARCHAR2(32767)

INDEX BY BINARY_INTEGER;
big big_type;

BEGIN
DBMS_OUTPUT.enable;
FOR i IN 1 .. 32767
LOOP

big (i) := NULL;
END LOOP;

END;

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 219

Rely on PLS_INTEGER

PLS_INTEGER operations use machine arithmetic, making it
the most efficient datatype for integer manipulation
– It has the same range as BINARY_INTEGER (-2147483647 ..

2147483647)
– Performance gains will vary greatly depending on the integer

computations

Prior to Oracle8, watch out for differences in behavior between
BINARY_INTEGER and PLS_INTEGER
– Use of PLS_INTEGER might raise an overflow exception, while use of

BINARY_INTEGER does not
– In Oracle8 and above, use of either raises consistent ORA-01426

errors (NUMERIC_OVERFLOW)
plsint*.sql

overflow.tst

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 220

Avoid Implicit Conversions
If you are not careful, you can easily rely on the PL/SQL
engine to perform implicit (and perhaps unnecessary)
datatype conversions
– The result is minor performance degradation

implconv.tst

DECLARE
num NUMBER;

BEGIN
num := num + 1;

DECLARE
num NUMBER;

BEGIN
num := num + 1.0;

DECLARE
str VARCHAR2(100);
int PLS_INTEGER;

BEGIN
str := str || int;

DECLARE
str VARCHAR2(100);
int PLS_INTEGER;

BEGIN
str := str || TO_CHAR (int);

Instead of this... Do this...

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 221

Minimize Transfer of Large
Structures

Default parameter passing in PL/SQL is by value, not reference
– This means that IN OUT parameters are copied into local data

structures, upon which changes are made. The local contents are then
copied back to the parameter upon successful completion

Large IN OUT parameters (records and collections, primarily)
can cause performance degradation
Two solutions to this problem:
– Move data structure out of parameter list and into a package

Specification (making it a "global")
– Use the NOCOPY feature of Oracle8i

You can also use the Oracle8i UTL_COLL to tune access to
nested tables

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 222

Move Structure to Package Spec.

You can avoid passing a large structure by defining it in the
specification of a package, making it globally accessible
– You can then remove it from the parameter list of your program and

reference it directly within the program
– SAFEST way to do this is to put the collection or record itself in the

package body and provide programs to access that structure
– Note: performance gains will vary greatly depending on what kind of

operations you perform on the structure
When you do this, you lose some flexibility
– Only once instance of the global can be manipulated within your

session
– This is quite different from passing any number of different structures

as parameters
pkgvar.pkg
pkgvar.tst

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 223

Use the NOCOPY Feature of Oracle8i

Most useful for collections, records and objects, but remember:
– When you specify NOCOPY, you are only making a request of or

suggestion to the compiler
Your request to use NOCOPY will be ignored when:
– Program is called via RPC (remote procedure call)
– You pass in just an element of a coll3ection
– Collection elements have a constraint (e.g., NOT NULL)
– Parameters are records with anchored declarations
– Implicit datatype conversions are required
– And more...see the documentation

PROCEDURE nocopydemo (
some_collection IN OUT NOCOPY some_collection_tabtype,
some_object OUT NOCOPY some_object_type);

nocopy*.tst

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 224

Nasty Tradeoff with By Reference
Passing

With conventional call by value:
– Parameter value changes are “rolled back” on an exception in called

routine
– May be preferred for data integrity -- behavior is in accord with

Oracle's read consistent principles
With call by reference (NOCOPY and using globals):
– Changes made to to a by-ref parameter take effect immediately and

are not rolled back when an exception occurs in your program. The
result may be a data structure with partial changes

Watch out for parameter aliasing problems (an issue for by-
value parameter passing as well)
– Issue arises when you pass a global structure as a parameter and

directly reference/change that global inside the program
parmalias.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 225

Tune Access to Nested Tables
UTL_COLL is a new
Oracle8i package that
allows you to take
advantage of stored
nested table “locators”
You can avoid
materializing a large
collection into memory by
instead accessing it via
locator
– Handy when you only

want to access a portion
of the collection's
attributes

CREATE OR REPLACE FUNCTION getpets_like
(petlist IN Pettab_t, like_str IN VARCHAR2)
RETURN pettab_t

IS
list_to_return Pettab_t := Pettab_t();
onepet Pet_t;
counter PLS_INTEGER := 1;

BEGIN
IF UTL_COLL.IS_LOCATOR(petlist)
THEN

FOR theRec IN
(SELECT VALUE(l) apet

FROM TABLE(CAST(petlist AS Pettab_t)) l
WHERE l.name LIKE like_str)

LOOP
list_to_return.EXTEND;
list_to_return(counter) := theRec.apet;
counter := counter + 1;

END LOOP;
ELSE

FOR i IN 1..petlist.COUNT
LOOP

IF petlist(i).name LIKE like_str
THEN

list_to_return.EXTEND;
list_to_return(i) := petlist(i);

END IF;
END LOOP;

END IF;
RETURN list_to_return;

END;
utlcoll*.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 226

Avoid NOT NULL Constraint
Oracle recommends that you avoid applying the NOT NULL constraint
to a declaration, and instead check for a NULL value yourself
Instead of this:

Do this:

Note: my tests indicate that the savings are nominal
notnull.tst

DECLARE
my_value INTEGER NOT NULL := 0;

BEGIN
IF my_value > 0 THEN ...

END;

DECLARE
my_value INTEGER := 0;

BEGIN
IF my_value IS NULL THEN /* ERROR! */
ELSIF my_value > 0 THEN ...

END;

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 227

Defer Memory and CPU Allocation

Use nested, anonymous blocks to defer allocation of memory
and even CPU utilization

PROCEDURE always_do_everything
(...)

IS
big_string VARCHAR2(32767) :=

ten_minute_lookup (...);
big_list

list_types.big_strings_tt;
BEGIN

IF <condition>
THEN

use_big_string (big_string);
Process_big_list (big_list);

ELSE
/* Nothing big

going on here */
...

END IF;
END;

PROCEDURE only_as_needed (...) IS
BEGIN

IF <condition>
THEN

DECLARE
big_string VARCHAR2(32767) :=
ten_minute_lookup (...);

big_list
list_types.big_strings_tt;

BEGIN
use_big_string (big_string);
Process_big_list (big_list);

END;
ELSE

/* Nothing big
going on here */

...
END IF;

END;

Before After

defer.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 228

Cache Data with Packages

General principle: if you need to access the same data and it
doesn't change, cache it in the most accessible location to
maximize lookup performance
Packages offer an ideal caching mechanism
– Any data structure defined at the package level (whether in

specification or body) serves as a persistent, global structure
– Remember: separate copy for each connection to Oracle

Let's explore further:
– Define, protect and access package data
– Use the initialization section

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 229

Define, Access and Protect Pkg Data
Great example: the USER function
– The value returned by USER never changes in a session
– Each call to USER is in reality a SELECT FROM dual
– So why do it more than once?

CREATE OR REPLACE PACKAGE thisuser
IS

FUNCTION name RETURN VARCHAR2;
END;

CREATE OR REPLACE PACKAGE BODY thisuser
IS

/* Persistent "global" variable */
g_user VARCHAR2(30) := USER;

FUNCTION name RETURN VARCHAR2 IS
BEGIN

RETURN g_user;
END;

END;

thisuser.pkg
thisuser.tst

Hide package data!
If exposed, you cannot
guarantee integrity of data.
Build "get and set"
programs around it.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 230

Optimize Lookups with a Local Cache

Common application requirement: look up name or description
for foreign key in a table
– Common, but expensive operation in a client-server environment

Wouldn't it be nice to be able to have the application remember
that it just queried that value?
– In many cases, the value hasn't changed (how many "code" tables do

you have?)
While Oracle does optimize performance of repetitive access,
you still pay the price for going through the SQL layer
– Perhaps we can take advantage of a local cache (per user) to speed up

performance

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 231

Function
PGA

Data Caching with PL/SQL Tables

First access

Subsequent accesses

PGA
Function

Database

Not in cache;
Request data
from database

Pass Data
to Cache

Application

Application
Requests Data

Data retrieved
from cache Data returned

to application

Application

Application
Requests Data

Data returned
to application

Data retrieved
from cache

Database
Data found in

cache. Database
is not needed.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 232

Code for a Caching Function

You must place the retrieval function inside a package
– The package body provides persistence for PL/SQL table
– Note that the specification gives no indication of the technique used to

return the company name

PACKAGE te_company
IS

FUNCTION name$val (id_in IN company.company_id%TYPE)
RETURN company.name%TYPE;

END te_company;

Specification

PACKAGE BODY te_company
IS

TYPE names_tabtype IS
TABLE OF company.name%TYPE INDEX BY BINARY_INTEGER;

names names_tabtype;

Body...

…continued on next slide

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 233

Body of Self-Optimizing Function
FUNCTION name$val (id_in IN company.company_id%TYPE)

RETURN company.name%TYPE
IS

CURSOR comp_cur IS
SELECT name FROM company where company_id = id_in;

retval company.name%TYPE;
BEGIN

IF names.EXISTS (id_in)
THEN

retval := names (id_in);
ELSE

OPEN comp_cur; FETCH comp_cur INTO retval;
CLOSE comp_cur;

IF retval IS NOT NULL
THEN

names (id_in) := retval;
END IF;

END IF;
RETURN retval;

END name$val;
END te_company;

If the row is cached,
retrieve from cache.

If not in cache, use
standard database

retrieval.

If a match was found
store it in the

cache for next time.

emplu.pkg
emplu.tst

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 234

Another Tool, To Be Applied
Selectively

Local caching isn't always appropriate
– The data should be static. If the table from which you cached data

changes, it is very difficult to update the cache
– Either for small tables or for large tables with "hot spots"

You can produce variations on this theme:
– Pre-load the entire table into memory. Might be handy for small tables
– Add a flag to your function to allow either database retrieval or cached

retrieval, modifiable at run-time
– Create a "system-wide" cache that is accessible to all sessions. This

can be done using database pipes and is explored in the Oracle Built-
in Packages seminar

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 235

Leverage Oracle Hashing
Hashing algorithms transform strings to numbers
– Standard usage: generate unique values for distinct strings

FUNCTION DBMS_UTILITY.GET_HASH_VALUE
(name IN VARCHAR2,
base IN NUMBER,
hash_size IN NUMBER)

RETURN NUMBER;

Provide the string, the base or starting point, and the hash size (total
number of possible return values).
Tips for hashing:

– You must use the same base and hash size to obtain consistent hash
values

– Maximum hash size: upper limit of BINARY_INTEGER: 2**31-1
– No guarantee that two different strings will not hash to the same

number. Check for and resolve conflicts

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 236

A Hash Encapsulator

Hide base and hash table values to ensure consistency
CREATE OR REPLACE PACKAGE hash
IS

FUNCTION val (str IN VARCHAR2) RETURN NUMBER;
END hash;
/
CREATE OR REPLACE PACKAGE BODY hash
IS

maxRange CONSTANT BINARY_INTEGER := POWER (2, 31) - 1;
strt CONSTANT BINARY_INTEGER := 2;

FUNCTION val (str IN VARCHAR2) RETURN NUMBER IS
retval NUMBER := 0;

BEGIN
RETURN

DBMS_UTILITY.GET_HASH_VALUE (str, strt, maxRange);
END val;

END hash;
/

hash.pkg
hashcomp.tst

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 237

Row # is
employee ID

number.

Cached Data Collection

Hashing for an Alternative Index

Index-by tables support only one index: the row number
– So to locate the row in which a particular string is located, you have

to do a "full table scan" -- or do you?
Use the hash function to build an alternative index to the
contents of the PL/SQL table

altind*.pkg
altind.tst

78955 10551055 SMITH, 12-JAN-99, ...

203055 34583458 FELLON, 10-MAR-82, ...

1109878 79887988 DIONA, 22-JUL-90, ...

Hash Name to
Produce Alt Index Row #

Complete the round trip to find the row for a name

Alternate Index Collection

SMITH

FELLON

DIONA

Row # Row #Full Set of Employee Data Employee ID and Name

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 238

Quiz!
How can we
tune up this
program?
Remember: You
will not usually
find big gains in
data structure
tuning, but the
cumulative effect
can be
impressive.

CREATE OR REPLACE PROCEDURE fix_me (
nmfilter IN VARCHAR2, comm_list IN OUT comm_pkg.reward_tt
)

IS
v_nmfilter VARCHAR2(2000) NOT NULL := nmfilter;
v_info VARCHAR2(2000);
v_nth INTEGER;
v_sal NUMBER;
indx INTEGER

BEGIN
FOR indx IN comm_list.FIRST .. comm_list.LAST
LOOP

v_nth := v_nth + 1;
v_info :=

'Doubled ' || v_nth || 'th salary on ' ||
SYSDATE || ' to ' || comm_list(indx).sal * 2;

IF UPPER (comm_list(indx).nm) LIKE
UPPER (v_nmfilter)

THEN
UPDATE employee

SET salary := comm_list(indx).sal * 2.0,
info := v_info,
commission := comm_list.comm

WHERE last_name = UPPER (comm_list(indx).nm);
comm_list(indx).comm := 0;

END IF;
END LOOP;

END;

slowds*.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 239

PL/SQL Tuning and Best
Practices

Manage Code in the Database
and SGA

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 240

Manage Code in the
Database/SGA

PL/SQL code is stored in the Oracle data dictionary
and executed from the SGA's shared pool area
– It is imperative that you understand the PL/SQL

architecture and then tune access to your code
PL/SQL Architecture in Shared Memory
Analyze Code Usage & Dependencies
Manage Memory Allocation and Usage

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 241

Analyze Code Usage &
Dependencies

How big is my code?
What does my code need in order to run?
What is cached in the SGA?
The V$DB_OBJECT_CACHE view
The V$SQLAREA view

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 242

How Big is My Code?

Oracle offers the *_OBJECT_SIZE views to give you information
about the size of your code. There are three different entries of
interest:
– Source size: the source code, used to recompile the program
– Parsed size: Code required to compile other programs that reference this

one. If you "keep" a program unit, this code is also loaded into the SGA
– Code size: partially-compiled code that is loaded into the SGA

Use the view to identify large programs and compare sizes of
different implementations
Large program units are generally good candidates for pinning into
the SGA (covered later)

pssize.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 243

What Does My Code
Need to Run?

If program A calls program B, then both A and B need to be
present in the SGA for A to execute
Oracle maintains dependency information in a variety of
views (*_DEPENDENCIES and PUBLIC_DEPENDENCY)
Analyze complete memory requirements!
– Combine dependency information with USER_OBJECT_SIZE to

get a more complete picture
– Or take snapshots (before and after) of what is in the SGA (more

on this later)
Watch out! Accessing these DD views can be very time-
consuming (to learn and to execute). analyzedep.ins

analyzedep.sql
analyzedep.tst

utldtree.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 244

What is Cached in the SGA?
The best way to understand the requirements and activity of
the PL/SQL code in the SGA is to look at the SGA
Oracle offers a variety of data structures to get this
information:
– V$ROWCACHE: check for data dictionary cache hits/misses
– V$LIBRARYCACHE: check for object access hits/misses
– V$SQLAREA: statistics on shared SQL area, one row per SQL

string (cursor or PL/SQL block)
– V$DB_OBJECT_CACHE: displays info on database objects that

are cached in the library cache
And much more. We will just scratch the surface and pull out
those items most useful for PL/SQL tuning

grantv$.sql
insga.pkg

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 245

Library Cache views

Shared Pool

Library Cache V$DB_OBJECT_CACHE

Cursor cache V$SQLAREA DB PIPES

BEGIN
-- plsql

END;

JAVA class

SELECT

INSERT

UPDATE DELETE
PLSQL PKG BODY

PLSQL PKG SPEC

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 246

The V$DB_OBJECT_CACHE View

The V$DB_OBJECT_CACHE view gives you this
information:
– LOADS: number of times element has been loaded to the SGA
– EXECUTIONS: number of times element has been executed. This

is not aggregated for the program name. Only for the code block.
– KEPT: YES if the element has been pinned
– TYPE: NOT LOADED if the element has been referenced but not

loaded
Excessive numbers of loads and/or high execution counts
indicate the need for adjusting the shared pool size and/or
pinning that program unit

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 247

The V$SQLAREA View

This view gives you lots of information about the contents of
the shared pool and parsed SQL statements
Is a subset of V$DB_OBJECT_CACHE and does not have
separate aggregate entries for individual program units
You can analyze statements for memory and disk usage,
repetitive SQL, and so on
SQL> exec insga.show_similar
*** Possible Statement Redundancy:

begin fix_me (1); end;
begin fix_me(1); end;

*** Possible Statement Redundancy:
select * from EMP
select * from emp

insga.pkg
similar.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 248

Tune Memory Allocation
and Usage

Set the SGA shared pool size
Manage session memory with DBMS_SESSION
Use the SERIALLY_REUSABLE Pragma
Minimize program inter-dependencies

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 249

Size the Shared Pool
The shared pool must be large enough to cache your code
without excessive (or any) swapping
– Oracle uses the least-recently-used algorithm to make room for code

that needs to be executed
– Tune size of shared pool through analysis of contents of shared pool

when application is up and running
INIT.ORA parameters of interest:
– SHARED_POOL_SIZE: size in bytes of shared pool area
– SHARED_POOL_RESERVED_SIZE: size in bytes of portion of shared

pool area reserved for requests larger than
SHARED_POOL_MIN_ALLOCATION when the shared pool does not
have enough contiguous blocks for request.

SQL> exec insga.show_hitratio
ROW CACHE Hit ratio = 93.81%

Ratio is below 95%. Consider raising the SHARED_POOL_SIZE init.ora
parameter.
LIBRARY CACHE Hit ratio = 99.61%

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 250

Manage Session Memory
DBMS_SESSION.RESET_PACKAGE
– Reinitializes all package states, your own and even the built-in

packages like DBMS_OUTPUT
– Never use in stored PL/SQL (embedded within an application);

package states will not be re-instantiated until outer-most PL/SQL
block within which RESET_PACKAGE was called completes

– RESET_PACKAGE does not release memory associated with cleared
package variables (see next program)

DBMS_SESSION.FREE_UNUSED_USER_MEMORY
– Returns memory back to OS or shared pool
– Call after compilation of large objects, when large PL/SQL tables are

no longer needed, or after large sort operations
Recommendation: clear out memory before you start a profiling
session to "make all things equal"

reset.sql
resetmem.sql
mysess.pkg

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 251

Freeing Unused User Memory
(FUUM)

One local table,
one "global"

table

Two local
tables

After procedure
execution and

FUUM, no
memory

allocated.

After procedure execution and FUUM, global
memory still allocated.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 252

Pin Code in the SGA
"Pin" your code (including triggers and types) into shared
memory, and exempt it from the LRU algorithm
– When you pin using, your code remains in the SGA until the instance is

shutdown
Pinning is usually performed right after database startup. Prior to
Oracle 7.3, two separate steps were required
– 1. Register that program, package or cursor to be pinned by calling the

DBMS_SHARED_POOL.KEEP procedure
– 2. Reference the code element so that it will be loaded into memory.
– This second step is now performed with the call to KEEP

The DBMS_SHARED_POOL is not automatically
installed/available in all versions. See pool.ins.

pool.ins
plvpin.sp
keeper.sql

showkeep.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 253

Use the SERIALLY_REUSABLE Pragma

By default, package-level data structures persist for the entire
session and are stored in the user memory area
– Problematic memory consumption with large numbers of users

Oracle8 offers a new pragma to instruct the runtime engine to
release memory after each package instruction
– And shift allocation of memory to the SGA, not PGA/UGA

Especially handy:
– For closing package-level cursors automatically
– Releasing memory used for collections and large VARCHAR2s

CREATE OR REPLACE PACKAGE one_use_pkg

IS

PRAGMA SERIALLY_REUSABLE;

CURSOR must_close_cur IS SELECT ...;

big_collection lotsa_strings_tabtype;

END one_use_pkg;

Designate in both
specification and

body.

serial.sql

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 254

Minimize Inter-Program
Dependencies

As you write more and more PL/SQL code and seek to re-use
that code, you need to be careful about:
– The dependencies you establish between programs and packages
– What programs you put into which packages

You may sometimes need to re-architect packages as they
evolve over time
– It is important to keep intact the legacy specification

analyzedep.*
utldtree.sql

Old

New

Proc 1 Proc 2

Proc 1

Proc 2

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 255

PL/SQL Tuning & Best Practices

Creating Readable &
Maintainable Code

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 256

Writing Code You Can Be Proud Of

And code you -- as well as others -- can maintain
with an absolute minimum of headaches
– Use the full range of constructs in the language
– Achieve a consistent, readable coding style
– Choose names carefully for program elements
– Document to add value
– Keep the execution section tight, and its meaning and purpose

transparent

Tips for organizing source code in files

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 257

Use Everything the Language Offers

PL/SQL is based on Ada, and is a highly structured and
robust language. Use it, all of it! Some examples...

c_max_date CONSTANT DATE DEFAULT SYSDATE;

If a variable's value doesn't change, declare a constant.
This both protects the value and also documents for

others that it should not be changed.

Use the native BOOLEAN datatype

<<every_month>>
FOR month_ind IN 1 .. 12
LOOP

every_month.month_ind ...
END LOOP every_month;

Use labels for anonymous blocks and loops.
They're not just or GOTOs.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 258

The Boolean: A True Pleasure
The database doesn't support Boolean columns, but that's
no excuse to avoid PL/SQL's datatype
– A Boolean can have one of three values: TRUE, FALSE and NULL

IS
valid_company CHAR(1);

BEGIN
IF valid_company = 'Y'

IS
valid_company BOOLEAN;

BEGIN
IF valid_company = TRUE

IS
valid_company BOOLEAN;

BEGIN
IF valid_company

Nasty!

Better...

Best.

You don't have to use Y
or N, T or F, etc. to

represent these actual
values.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 259

Achieving a Consistent Coding Style

Programs are more readable and easier to maintain when a
consistent and effective coding style is applied
– Each developer should have a consistent style. Best of all? An entire

team shares a common style
There are two ways to achieve this objective:
– Make sure everyone writes code the same way
– Use a utility to format the code after or while it is written

Chapter 3 of Oracle PL/SQL Programming offers 34 pages on
the Feuerstein idea of style
PL/Formatter from RevealNet is the first commercial "pretty
printer" for PL/SQL code
– Check for others as well!

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 260

Hard-to-Read SQL Statement

No, none of us ever write anything like this, right?
The ABCs of table aliases are particularly informative: we
have consistency, but we don't have added value
– Rules for rules' sake are not necessarily an improvement

SELECT company_id, sales,
address1, company_type_ds description, min_balance
FROM
company A, sales_amount B, company_type C, company_config D,
region E, regional_status F
WHERE
A.company_id = B.company_id and
A.company_type_cd = C.company_type_cd
and C.company_type_cd = D.company_type_cd and A.region_cd =
E.region_cd and E.status = F.status;

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 261

A Non-Procedural Format for
SQL

SELECT COM.company_id,
sales,
address1,
company_type_ds description,
min_balance

FROM company COM,
sales_amount SAL,
company_type TYP,
company_config CFG,
region REG,
regional_status RST

WHERE COM.company_id = SAL.company_id
AND COM.company_type_cd = TYP.company_type_cd
AND TYP.company_type_cd = CFG.company_type_cd
AND COM.region_cd = REG.region_cd
AND REG.status = RST.status;

Logical "middle" of
SQL statement

Clause
Keywords

of
Statement

right-justified

Application-
specific

elements
left-

justified

Meaningful
table

aliases

No vertical
alignment

of
elements

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 262

The Name is a Lot of the Game

Both the structure and content of the names you give to
program elements have a direct impact on the quality of your
code
Potential problems include:
– The name does not accurately describe what the code element does

or represents
– The same code element is represented by a bewildering array of

different names
– The structure of the name misrepresents the code; usually this occurs

when you give "procedure names" to functions
– Names of database objects, such as tables and columns, are used as

names of PL/SQL variables

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 263

Use standard prefixes or
suffixes for code elements

Cursor company_cur
Record company_rec
Local variable l_ename
Global variable g_ename
Constant c_lastdate
PL/SQL Table Type dates_tabtype
PL/SQL Table dates_tab

Recommendations for Naming
Elements

Most important aspect
of conventions:

Consistent application!

The syntax of program names
is critical

– Verb-noun for
procedures

– Preposition for Boolean
functions

– Noun for other functions

PROCEDURE calculate_totals

FUNCTION is_valid_type (...)
RETURN BOOLEAN

FUNCTION total_sales RETURN NUMBER

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 264

Provide documentation in the following areas:
– Standard program header: who, what, when, why
– Modification histories
– Explanations of a workaround, patches, etc.
– A "translation" of a complex or dense section of code

• As we shall see, though, a better solution than a comment is to make
the code less complex and dense

Avoid fancy comment "boxes" and right margins
– Don't waste time maintaining the format of your comments

Keep comments down to an absolute minimum
– Remember: they are a form of code repetition
– Best of all is to avoid comments and allow your code to

"speak for itself"

Comment to Add Value

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 265

The Path to Righteous Code

/* If the first field of the properties record is N... */
IF properties_flag.field1 = 'N' THEN

/* If the customer is not eligible for a discount... */
IF properties_flag.field1 = 'N' THEN

IF customer_flag.discount = constants.ineligible
THEN

IF NOT customer_rules.eligible_for_discount (customer_id)
THEN

A singularly non-informative comment

At least the comment adds some value now!

Encapsulation with a function offers readability and easy enhancement

Better names for variables, named constants got rid of the comment

constants.sps
custrules.pkg

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 266

OK, Use Some Words and Paper

Create checklists to serve as reminders before construction,
and guidelines for code review after completion
– The following items are offered simply to give you an idea of the

topics you might include

General coding guidelines
– All naming conventions are followed
– No hard-coded values
– Repetitive code is modularized
– Functions always return values
– One way in, one way out: loops and programs
– Unused variables and code sections are removed

Check out
Code Complete

by Steve McConnell
for many more
coding tips and

checklists.

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 267

Organizing Source Code in Files
Use standard file extensions for different kinds of source code:
pks for package specs, pkb for package bodies, etc.
Always separate the "CREATE OR REPLACE" for package
specifications and bodies into different files
– You only recompile your package specifications when needed

(minimizing the cascade of INVALID program units)
Create/compile all of your specifications before you compile
your bodies
– This defines all the headers or stubs for your application code to

compile
– You can then create packages with inter-dependencies and no

compilation problems

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 268

Creating Readable/Maintainable Code

Summary

Take Full Advantage of the Language
– And don't assume you know it all. Take time out regularly

for a little studying

Write Code You Can Be Proud Of
– From coding style to names to structure, your software is a

product of your mind. Why make a mess of it?

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 269

You Can Write Blazing Fast
PL/SQL!

Tuning PL/SQL code is an iterative and incremental process
– You are unlikely to uncover a "silver bullet" that is not related to some

SQL statement. You can, however, have a substantial impact on the
performance of your and others' code

Write code with efficiency in mind, but save intensive tuning until
entire components are complete and you can perform
benchmarking
MOST IMPORTANT! Avoid repetition and dispersion of SQL
statements throughout your application
PL/SQL code is executed from shared memory. You must tune the
shared pool to avoid excessive swapping of code

9/16/2006 Copyright 2001 Steven Feuerstein, PL/SQL Best Practices - page 270

Closing Comments

Write code with efficiency in mind, but save intensive tuning
until entire components are complete and you can perform
benchmarking
Concerning best practices, give yourself a fighting chance:
– Use code generators whenever possible; make it hard to not

employ best practices
– Write scripts to check source for compliance
– Share lessons learned and code built

Visit the PL/SQL Pipeline (www.revealnet.com/plsql-pipeline) to share
what you learn about tuning and best practices, and to get your

questions answered.

